
WL-TR-91-1038

AD-A236 494

EVALUATION AND VALIDATION GUIDEBOOK
Version 3.0

Peter G. Clark
Bard S. Crawford

TASC
55 Walker's Brook Drive W

Reading MA 01867

May 1991

Interim Report I ~

Approved for public release; distribution is unlimited. -

AVIONICS DIRECTORATE 9 - 0 2
WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND
1~lll

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543 E 11

91 5 31 01.4

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-

tion.

,iK2

RAYMND SZYMAN4 Date
Project Enginee

FOR THE COMMANDER

6 L IL

Date

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAF , WPAFB, OH 45433- 6543 to '%lp us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

R EORT DOCUMENTATION PAGE OM No. 0704-0188

-e $ -!s ;' tim% W0CWM ftimU3te Of ;In, k I I f!"

C- - Z _. iVo IP1,r - C4 1). WaP Jfl ten, '.' 3

3- -4:'C YPE AND OATES COVERED

May 1-991. 1nterim __________

5 FUJNDING NUMBER'

Evaluation & Validation Guidebook C-F33615-85-C-1812
Version 3.0 PE-63756D

PR-2853
- ~2 TA-01

Pecer C. Clark WU-01
Bard S. Crawford

' Walk.er's Brok Drive
Red~gMA 01867 TASC

TR 5234-4

Ral-.jn Szymnski
%L1AAF-3 (513) 235-3947 WL-TR-91-1038

PA3OH *5433-6543

L8 report !:upercede-- the. Eval~ation VaIl'.ation Guidebook

v~for Public Rer-se; Di.,:tribution Ii unalimited

"cpurpoise of tlhe E&V Guidebook 1 % to provide information that will help users
t~j jsesq APSEs and APSE components by:

(1) Assisting in the selection of E&V procedures, the interpretation of
results, and integration ,.f analyses and results,

(2) Describing E&V procedures and techniques developed by the E&V Project,
and

(3) Assist~ng In the locatiun uf E&V procedures and techniques developed
outside the~ E&V Project.

AILI ECKV procedures Lind techniques found in the Guidebook are referenced by the
indexes contained In tecompan ion document called the E&V Reference Manual.

Ada Programming Support Environment (APSE) 237 ___

Ada I ~C F '00E

Evaluation? VKalidation, Metrics, ACEC_____________
-j %E j P 2L5~ 0A'O , L IM IT A iON 0; A 8S TR P C

- 2;.~r~.rJUL
Unclass Unclass Unclass

,GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Report Date. Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of ReDort and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 See on Technial
Jun 87 - 30 Jun 88). Statements on Technical

Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. S Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.

A, .e Xea. Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Soonsorin/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
_Names(s) and Address(es). Sef-explanatory. contains classified information, stamp

Block 10. Sponsorina/Monitoring Agency, classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. Supolementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to a nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)

E&V Guidebook, Version 3.0

EXECUTIVE SUMMARY

The Ada community, including Government, industry, and academic personnel, needs the

capability to assess APSEs (Ada Programming Support Environments) and their components,

and to determine their conformance to applicable standards (e.g., MIL-STD-1838A, the CAIS

standard). The technology required to fully satisfy this need is extensive and largely

unavailable; it cannot be acquired by a single government-sponsored, professional society-

sponsored, or private effort. The purpose of the APSE Evaluation and Validation (E&V)

Project is to provide a focal point for addressing the need by:

(1) Identifying and defining specific technology requirements,

(2) Developing selected elements of this technology,

(3) Encouraging others to develop additional elements, and

(4) Collecting information describing elements which already exist.

This information will be made available to DoD components, other government agencies,

industry and academia.

The purpose of the E&V Guidebook (this document) is to provide information that will

help users to assess APSEs and APSE components by:

(1) Assisting in the selection of E&V procedures, the interpretation of results, and
integration of analyses and results,

(2) Describing E&V procedures and techniques developed by the E&V Project.
and

(3) Assisting in the location of E&V procedures and techniques developed outside
the E&V Project.

All E&V procedures and techniques found in the Guidebook are referenced by the indexes

contained in the companion document called the E&V Reference Manual.

Chapters 1 through 4 of this document provide a general introduction to E&V. describe

the structure of the Guidebook and how to use it, discuss the issue of integrating the results of

multiple assessments, and provide synopses of relevant E&V literature. Chapter 5 and later

ES-I

E&V Guidebook, Version 3.0

chapters are built around a standard format and each chapter contains all the assessment

procedures and techniques associated with a particular group of tools or toolsets to be assessed,

such as Compilation System Assessors or Test System Assessors. The assessment procedures

are described and in some instances can be applied directly from the information given in the

Guidebook. In other cases, the user is directed to a primary reference for more information.

Readers should not infer approval by the E&V Team or its sponsors, because a tool or

technique is included in the collection, or disapproval, because a tool or technique is not included.

Nor should readers infer any judgement as to the relative importance of an entry based on its

position in a chapter. Readers who know of instances of E&V technology not reported here

are urged to contact the E&V Project Leader, in the manner described below.

Yearly updates and extensions to this document are planned. Therefore, comments and

suggestions are welcome. Please send your comments on the Request for Use! Feedback at

the back of the Guidebook by regular mail to Mr. Raymond Szymanski, WL/AAAF, Wright

Patterson AFB, OH 45433-6543, or, preferably, the same information electronically to

szvmansk@ajpo.sei.cmu.edu.

ES-2

E&V Guidebook, Version 3.0

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ... ES-1

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION ... 1-1
1.1 Purpose of Guidebook 1-1
1.2 The Need for E&V Technology 1-3
1.3 Background 1-4
1.4 Organization of the Guidebook 1-5

2. STRUCTURE AND USE OF THE GUIDEBOOK 2-1
2.1 Structure 2-1
2.2 Exam ple Uses 2-3
2.3 Bias in Evaluation 2-4

3. INTEGRATION OF APSE ASSESSMENTS 3-1
3.1 General Background 3-1
3.2 Early Efforts at Integrated APSE Assessment 3-2
3.3 Towards a Comprehensive Approach 3-3

4. SYN O PSES 4-1
4.1 Stonem an 4-2
4.2 Houghton: A Taxonomy of Tool Features for the Ada Programming

Support Environment (APSE) 4-3
4.3 E&V Report: DoD APSE Analysis 4-4
4.4 Classification Schema/E&V Taxonomy Checklists 4-5
4.5 Requirements for E&V 4-6
4.6 Tools and Aids for E&V 4-7
4.7 STARS-SEE Operational Concept Document 4-8
4.8 Grund, et al.: Key Characteristics of APSEs 4-9
4.9 Ada-Europe: Selecting an Ada Environment 4-10
4.10 Mcdermid and Ripken: Life Cycle Support in the Ada Environment ... 4-12
4.11 Notkin and Habermann: Software Development Environment Issues

as Related to Ada ... 4-14
4.12 Stenning, et al.: The Ada Environment: A Perspective 4-15
4.13 Weiderman: Evaluation of Ada Environments 4-16
4.14 Barstow and Shrobe: Observations on Interactive Programming

E nvironm ents .. 4-17

iii

E&V Guidebook, Version 3.0

4.15 Houghton and Wallace: Characteristics and Functions of Software
Engineering Environments: An Overview 4-18

4.16 CAIS and CAIS-A: DoD-STD-1838 and MIL-STD-1838A 4-19
4.17 Nissen, et al: Guidelines for Ada Compiler Specification and Selection 4-20
4.18 Weiderman: Compiler Evaluation and Selection 4-22
4.19 Ada Performance Issues (PIWG Special Edition) 4-23
4.20 Software Tool Evaluation Model (STEM) 4-24
4.21 Information Resource Dictionary System (IRDS) 4-25

5. GENERAL PURPOSE ASSESSORS 5-1
5.1 Host and Target Questionnaire 5-1
5.2 Machine-Specific Characteristics Questionnaire 5-2
5.3 RADC Software Quality Metric Worksheets 5-5
5.4 SEI Assessment of Software Engineering Tools 5-7
5.5 Vendor Evaluation Questionnaire 5-8
5.6 Required Configuration Questionnaire 5-9
5.7 Cost Questionnaire . .. 5-11
5.8 M aturity Questionnaire 5-13
5.9 Licensing Issues Questionnaire 5-14
5.10 Software Production Vehicle(s) Questionnaire 5-16
5.11 Characteristics of Integrable Software Tools 5-18
5.12 SERC: A Framework for Analyzing User Interfaces 5-20
5.13 Z eus 5-22

6. COMPILATION SYSTEM ASSESSORS 6-1
6.1 Ada Compiler Validation Capability (ACVC) 6-2
6.2 ID A Benchm arks .. 6-3
6.3 Ada Compiler Evaluation Capability (ACEC) 6-4
6.4 PIW G Benchmark Tests 6-7
6.5 University of Michigan Benchmark Tests 6-9
6.6 MITRE Benchmark Generator Tool (BGT) 6-10
6.7 UK Ada Evaluation System (AES) 6-11
6.8 Compilation Checklist 6-12
6.9 Program Library Management Checklist 6-14
6.10 ARTEWG Catalogue of Ada Runtime Implementation Dependencies .. 6-15
6.11 ARTEWG Runtime Environment Taxonomy 6-16
6.12 Compiler Assessment Questionnaire 6-19
6.13 Weiderman: Compiler Evaluation Lists 6-21
6.14 Runtime Support System Questionnaire 6-23
6.15 Hartstone Synthetic Benchmark 6-25
6.16 Ada Compiler Performance Test Suite (ACPS) 6-27
6.17 Production Quality Ada Compiler (PQAC) Test Suite 6-28
6.18 Ada Compiler Specification and Selection Questionnaires 6-30

iv

E&V Guidebook, Version 3.0

7. TARGET CODE GENERATION AIDS AND ANALYSIS TOOLSET
ASSESSORS .. 7-1
7.1 Assem bling Checklist 7-2
7.2 Linking/Loading Checklist 7-3
7.3 Import/Export Capabilities Checklist 7-4
7.4 Emulation Capabilities Checklist 7-5
7.5 Debugging Capabilities Checklist 7-6
7.6 Timing Analysis Capabilities Checklist 7-8
7.7 Real-time Analysis Capabilities Checklist 7-9
7.8 Instruction-Level Simulation Checklist 7-10
7.9 SEI Debugging Experiment 7-11
7.10 Ada-Europe: Debugging Questionnaire 7-12
7.11 ACEC Symbolic Debugger Questionnaire 7-13

8. TEST SYSTEMS ASSESSORS 8-1
8.1 Testing Capabilities Checklist 8-1
8.2 SEI Unit Testing Experiment 8-3
8.3 STEM/SAIC Test Tools Evaluation 8-4
8.4 Ada-Europe: Testing and Dynamic Analysis Questionnaire 8-7

9. TOOL SUPPORT COMPONENT ASSESSORS 9-1
9.1 CAIS Implementation Validation Capability (CIVC) 9-2
9.2 Tool Support Interface Evaluation 9-4
9.3 Command Language Interpreter Assessment Questionnaire 9-5
9.4 Ada-Europe: Meta-Tools and Tool Components Questionnaire 9-6
9.5 AIM Benchmarks 9-7
9.6 Trade Journal Operating System Shell Evaluations 9-10
9.7 Trade Journal Operating System Utilities Evaluations 9-11
9.8 Trade Journal Expert System Shell Evaluations 9-13

10. REQUIREMENTS/DESIGN SUPPORT ASSESSORS 10-1
10.1 SEI Design Support Experiment 10-1
10.2 Requirements Prototyping Capabilities Checklist 10-2
10.3 Simulation and Modeling Capabilities Checklist 10-3
10.4 NADC/SPS CASE Tools Evaluation 10-5
10.5 Time-Critical Applications Support Checklist 10-7
10.6 STEM/Draper Requirements/Design Tools Evaluation 10-8
10.7 Software Methodology Catalog 10-10
10.8 CECOM: Procedures for Computer-Aided Software Engineering

Tool Assessm ent . .. 10-12
10.9 IEEE: An Evaluation of CASE Tools 10-14
10.10 ACM SIGSoft: Selection Criteria for Analysis and Design

CA SE Tools . .. 10-15
10.11 Trade Journal Requirements and Design Tool Evaluations 10-16

V

E&V Guidebook, Version 3.0

11. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS 11-1
11.1 Configuration Management Capabilities Checklist 11-1
11.2 SEI Configuration Management Experiment 11-4
11.3 Configuration Management Assessment Questionnaire 11-5
11.4 Ada-Europe: Product Management Questionnaire 11-6

12. DISTRIBUTED SYSTEMS DEVELOPMENT AND RUNTIME SUPPORT
ASSESSO RS 12-1
12.1 Performance of Parallel Ada 12-2

13. DISTRIBUTED APSE ASSESSORS 13-1
13.1 Distributed APSE Questionnaire 13-1

14. "WHOLE APSE" ASSESSORS 14-1
14.1 APSE Characterization 14-1
14.2 Ada-Europe Ada Environment Questionnaires 14-5
14.3 Cross-Development System Support Questionnaire 14-7
14.4 APSE Customization Questionnaire 14-8
14.5 Ada-Europe: Program Interaction Questionnaire 14-10

15. INFORMATION MANAGEMENT SUPPORT ASSESSORS 15-1
15.1 File Management Checklist 15-1
15.2 Database Management Checklist 15-4
15.3 Electronic M ail Checklist 15-7
15.4 Trade Journal Communications Tool Evaluations 15-10
15.5 Trade Journal Database Manager Evaluations 15-11

16. OTHER ASSESSORS ... 16-1
16.1 Text Editing Capabilities Checklist 16-1
16.2 Language-Sensitive Editing Capabilities Checklist 16-3
16.3 Performance Monitoring Checklist 16-5
16.4 Scheduling Checklist 16-6
16.5 Tracking Checklist 16-8
16.6 STEM/TRW Documentation Tools Evaluation 16-11
16.7 Ada-Europe: Project Management Questionnaire 16-13
16.8 Trade Journal Word Processor Evaluations 16-14
16.9 Trade Journal Desktop Publishing Evaluations 16-16
16.10 Trade Journal Presentation Graphics Evaluations 16-18
16.11 Trade Journal Spreadsheet Evaluations 16-20
16.12 Trade Journal Project Management Evaluations 16-22

vi

E&V Guidebook, Version 3.0

APPENDIX A CITATIONS.. A-1

APPENDIX B ACRONYMS AND ABBREVIATIONS........................B-i

APPENDIX C FORMAL GRAMMAR....................................C-1
C.1 Formal References...C-1
C.2 Formal Chapters.. C-2

C.2. 1 Chapter Components...................................C-2
C.2.2 Chapter Entries.......................................C-3
C.2.3 Formal Chapter Ordering................................C-4

C.3 Table of Contents... C-4
C.4 Citations.. C-4

APPENDIX D VENDORS AND AGENTS.................................D-1

REQUEST FOR USER FEEDBACK.....................................

vii

E&V Guidebook, Version 3.0

LIST OF FIGURES

Figure Page

1.1-1 Relationship Between Reference Manual and Guidebook 1-2

5.5-1 Vendor Characterization Form Categories 5-8

5.6-1 Required Configuration Questionnaire 5-10

5.7-1 Cost Q uestionnaire . .. 5-12

5.8-1 M aturity Questionnaire 5-13

5.9-1 Licensing Issues Questionnaire 5-14

5.10-1 Software Production Vehicle(s) Questionnaire 5-17

5.11-1 Characteristics of Integrable Tools Questionnaire 5-19

5.12-1 Analyzing User Interfaces Questionnaire 5-20

6.12-1 Com piler H ierarchy ... 6-20

6.14-1 Runtime Support System Questionnaire 6-24

9.3-1 Command Language Interpreter Hierarchy 9-5

11.3-1 Configuration Management Hierarchy 11-5

13.1-1 Distributed APSE Questionnaire 13-2

14.1-1 APSE Characterization Form 14-2

143-1 Cross Development System Support Questionnaire 14-7

14.4-1 APSE Customization Questionnaire 14-9

ix

E&V Guidebook, Version 3.0

x

E&V Guidebook, Version 3.0

LIST OF TABLES

Table Page

4.10-1 Example Coherent Methodology 4-12

6.8-1 Compilation Capabilities Checklist 6-13

6.9-1 Program Library Management Capabilities Checklist 6-14

6.11-1 Runtime Environment Taxonomy 6-17

6.13-1 Compiler Evaluation Lists 6-22

6.18-1 Ada Compiler Specification and Selection Questionnaires 6-31

7.1-1 Assembling Capabilities Checklist 7-2

7.2-1 Linking/Loading Capabilities Checklist 7-3

7.3-1 Import/Export Capabilities Checklist 7-4

7.4-1 Emulation Capabilities Checklist 7-5

7.5-1 Debugging Capabilities Checklist 7-7

7.6-1 Timing Analysis Capabilities Checklist 7-8

7.7-1 Real-time Analysis Capabilities Checklist 7-9

7.8-1 Instruction-level Simulation Checklist 7-10

8.1-1 Testing Capabilities Checklist 8-2

10.2-1 Requirements Prototyping Capabilities Checklist 10-2

10.3-1 Simulation and Modeling Capabilities Checklist 10-4

10.5-1 Time-critical Applications Support Checklist 10-7

11.1-1 Configuration Management Capabilities Checklist 11-2

14.2-1 Ada-Europe Environment Questionnaires 14-6

15.1-1 File Management Capabilities Checklist 15-2

15.2-1 Database Management Capabilities Checklist 15-5

15.3-1 Electronic Mail Capabilities Checklist 15-8

16.1-1 Text Editing Capabilities Checklist 16-2

16.2-1 Language-Sensitive Editing Capabilities Checklist 16-4

16.3-1 Performance Monitor Capabilities Checklist 16-5

16.4-1 Scheduling Checklist 16-7

16.5-1 Tracking Checklist 16-9

xi

E&V Guidebook, Version 3.0

1. INTRODUCTION

1.1 PURPOSE OF GUIDEBOOK

This document is a product of the Ada Programming Support Environment (APSE)

Evaluation and Validation (E&V) Project sponsored by the Ada Joint Program Office. It is one

of a pair of companion documents known as the E&V Reference System, consisting of:

* E&V Reference Manual

* E&V Guidebook.

The subject of both documents is the assessment of APSEs and their components. Specific

assessment techniques typically fall into one of two categories: evaluation (assessment of

performance and quality) and validation (assessment of conformance to a standard).

The purpose of the Guidebook is to provide a collection of information to support a variety

of E&V users in the following ways. It should help them:

* Gain an overall understanding of APSE assessment, in particular, the
selection of appropriate E&V procedures, the interpretation of test results,
and the integration of analyses and results.

" Apply the various E&V procedures and techniques developed under E&V
Project sponsorship.

Find the primary sources for those E&V procedures and techniques not
developed by the E&V Project or not fully explained within the Guidebook
(due to space or other constraints).

The Reference Manual includes many "pointers" to sections in the Guidebook and other

documents which describe E&V techniques in much the same way that a card catalog does in

a library. Figure 1.1-1 illustrates the relationship between the documents.

1-1

E&V Guidebook, Version 3.0

H-1038
Z'7191

Users May Consult Directly Consult
the E&V Reference or Die Conult
Manual to Extract: the E& V Guidebook..

(1) Useful (2) Pointers to
Information Sections in
Directly from or the Guidebook...
the Manual L

~V '

... Which Provides Information About
E&V Tools and Techniques

Figure 1.1-1 Relationship Between Reference Manual and Guidebook

1-2

E&V Guidebook, Version 3.0

1.2 THE NEED FOR E&V TECHNOLOGY

Technology for the assessment of APSEs and APSE components (tools) is needed because

of the difficulty in assessing APSEs and because of the importance of the decisions made based

on these assessments. The importance of an APSE selection is evident when one considers the

large, critical, Ada-based systems to be developed in the coming years. The effectiveness,

reliability, and cost of these systems will be strongly influenced by the environments used to

develop and maintain them. From the point of view of a software developing organization, the

decision to select an APSE can be an important investment decision with long-lasting influence

on a number of projects and the organization's operating procedures, training, and competitive-

ness. From the point of view of a software maintenance organization, the environment used

will strongly influence the organization's effectiveness, as well as the cost of its operations and

training.

The difficulty of assessing APSEs and tools exists for several reasons. First, an APSE

represents very complex technology with many elements, which can be assessed individually or

in combination. Second there is a confusing diversity of choice with respect to individual tools,

tool sets, or "whole APSEs"; and there are a number of ways of viewing APSEs; see Chapter

3 of the E&V Reference Manual [@RM 3]." Third, the state of the art of APSE architecture

and of some categories of tools (e.g., graphic design tools) is undergoing rapid change. Finally,

there is a lack of historical data relevant to APSEs, partly because of the general pace of

technological change and partly because we are dealing with Ada, a relatively new implementa-

tion language. E&V technology provides methods and techniques to overcome these difficulties

and provides a basis for determining performance and other attributes of APSEs.

In addition to the need for assessment technology itself, there is a need for information

about this technology. Potential buyers and users of APSEs and tools need a framework for

understanding APSEs and their assessment, as well as information about specific assessment

techniques. Similarly, vendors of tools and APSEs need to be aware of the deficiencies of

current products, as well as the criteria to be used in the assessment of future products. Such

awareness on both sides, expressed in a common terminology, should speed up the evolution

of better software development environments.

"The format used for references is associated with the "formal grammar" used beginning

with Chapter 5. See further explanations in Appendix C.

1-3

E&V Guidebook, Version 3.0

1.3 BACKGROUND

In June 1983 the Ada Joint Program Office (AJPO) proposed the formation of the E&V

Project and a tri-service E&V Team, with the Air Force designated as lead service. In October

1983 the Air Force officially accepted responsibility as !ead service and designated the Air

Force Wright Aeronautical Laboratories (AFWAL) at Wright Patterson Air Force Base as lead

organization. In April 1984 an E&V Workshop was held at Airlie, Virginia. The purpose of

the workshop was to solicit participation of industry representatives in the E&V Project. Many

of the participants in the workshop have chosen to remain involved as Distinguished Reviewers,

and additional industry participants have subsequently become involved in E&V Team

activities.

The E&V Project publishes an annual public report. The following paragraph is quoted

from the 1987 version [@Szymanski 1987] of the report:

The Ada community, including government, industry, and academic personnel, needs
the capability to assess APSEs (Ada Programming Support Environments) and
components and to determine their conformance to applicable standards (e.g., DoD-
STD-1838, the CAIS standard). The technology required to fully satisfy this need is
extensive and largely unavailable; it cannot be acquired by a single government-
sponsored, professional society-sponsored, or private effort. The purpose of the APSE
Evaluation and Validation (E&V) Task is to provide a focal point for addressing the
need by (1) identifying and defining specific technology requirements, (2) developing
selected elements of the required technology, (3) encouraging others to develop some
elements, and (4) collecting information describing existing elements. This information
will be made available to DoD components, other government agencies, industry, and
academia.

The team public reports contain much additional information for the interested reader. See

for example, the "DoD APSE Analysis Report" [@Castor 19841, the "Requirements for the

Evaluation and Validation of Ada Programming Support Environments, Version 2.0"

[@Szymanski 1987], and the "Tools and Aids Document, Version 1.0" [@Szymanski 19871,

which are synopsized in Chapter 4 [4.3, 4.5, 4.6].

1-4

E&V Guidebook, Version 3.0

Three competitive contracts have been awarded under the E&V Project. These are:

* Technical Support contract-awarded June 1985

* Ada Compiler Evaluation Capability (ACEC) contract-awarded February
1987

* CAIS Implementation Validation Capability (CIVC) contract-awarded May
1987.

The major purpose of the first of these contracts is to create and update elements of the E&V

Reference System, including this document. The purpose of the second and third contracts is

to create two additional elements (ACEC and CIVC) of the needed E&V technology.

1.4 ORGANIZATION OF THE GUIDEBOOK

Chapter 2 provides a general description of the structure and use of the Guidebook.

Chapter 3 provides high-level guidance to users who may need assistance in selecting

instances of the technology and integrating the results of its application.

Chapter 4 provides synopses of other documents or activities that are either too broad in

scope to fit within one of the later chapters or are of historical importance to E&V activities.

Chapter 5 and subsequent chapters are "formal chapters" that describe or refer to specific

instances of E&V technology. Each of the formal chapters contains all of the procedures and

techniques associated with a particular group of tools or toolsets to be assessed, such as

Compilation System Assessors or Test System Assessors. A standard format based on a

"formal grammar" is used in presenting this material. This formal grammar is explained further

in Appendix C.

Appendices A, B, and C contain a list of citations, a list of acronyms and abbreviations, and

a definition of the formal grammar used in the formal chapters, respectively. Appendix D

contains the list of vendors and agents of assessment tools who are the primary sources of E&V

technology.

1-5

E&V Guidebook, Version 3.0

2. STRUCTURE AND USE OF THE GUIDEBOOK

This chapter provides a brief explanation of the structure and uses of the E&V Guidebook.

It is expected that many users have first consulted the E&V Reference Manual (see Fig. 1.1-1)

and come to the Guidebook with a specific chapter and section number in hand, prepared to

read about a specific instance of E&V technology. A user following this path does not

particularly care about the overall structure of the document. Other users, however, may come

to the document with a less narrowly-defined objective. An attempt has been made, with such

users in mind, to make the Guidebook easy to use as a stand-alone document.

2.1 STRUCTURE

The Guidebook structure may be considered as having four major subdivisions, as follows:

* Introductory Material (Chapters 1 and 2)

* General Background Material (Chapters 3 and 4)

• Specific E&V Technology Descriptions (Chapters 5 and beyond)

* Appendices.

Chapters 1 and 2 are used to introduce the document and its structure. The general

background material is used to introduce the general subject of APSE assessment. Chapter 3

is an "essay" designed to help users who are faced with the question of how to evaluate an

APSE as a whole, or how to compare several APSEs with the objective of selecting one.

(Chapter 3 of the E&V Reference Manual, dealing with whole APSE assessment issues, is a
"companion essay" that provides complementary background material.) Chapter 4 provides

a different kind of background material. It may be considered a "guide to the literature" of

APSE assessment. It contains synopses of documents that fall into one of two categories. One

category is that of documents that contain no specific instances of E&V technology, but contain

2-1

E&V Guidebook, Version 3.0

generally useful background material. The other category is that of documents that contain or

discuss multiple instances of E&V technology, which are individually covered in multiple parts

of the later, formal chapters. These multiple instances can be thought of as children of a

common parent. In order to avoid the redundancy of summarizing the parent document many

times, the Chapter 4 synopsis is provided as a common point to which all the children may

refer. Each "synopsis text frame" in Chapter 4 has the following parts:

* Citation: (the primary reference)

* Synopsis: (brief description)

* Methods: (references to specific instances of E&V technology, if any).

The formal chapters (Chapters 5 and beyond), which comprise the main bulk of the

Guidebook, describe or summarize specific instances of E&V technology. The chapter subjects

and titles were chosen to be meaningful and intuitive to users of the Guidebook. Thus, they

focus on the subject of assessment (e.g., Compilation System, Test System, Ada Design Support

System, etc) rather than the method of assessment (e.g., formal validation, subjective

evaluation, etc). Within each chapter there are, in general, multiple instances of assessment

technology. Some may be examples of evaluation techniques, others may be examples of

validations, others may be mixtures of the two. Readers should not infer approval by the E&V

Team or its sponsors, because a tool or technique is included in the collection, or disapproval,

because a tool or technique is not included. Readers who know of instances of E&V

technology not reported here are urged to contact the E&V Project chairman, in the manner

described in the Executive Summary. The separate instances within a chapter are simply

placed there in chronological order, indicating the relative timing of the material's first

appearance in the Guidebook. Readers should not infer any judgment as to relative importance

based on order. Each chapter thus provides a dynamically growing section of the Guidebook.

Old sections will not be thrown away or replaced by new sections describing newer techniques.

Old sections may, however, be updated if a particular vendor or agent has updated material

describing a technique, or has improved the technique itself without fundamentally changing

the approach. Each "technique text frame" in the formal chapters has the following parts:

2-2

E&V Guidebook, Version 3.0

* Purpose:

* Primary References:

* Host/OS: (if applicable)

* Vendors/Agents: (if applicable)

* Method:
Inputs:
Process:
Outputs:

The final major subdivision (the appendices) require little explanation here. The formal

grammar described in Appendix C need not concern most users. It was employed because of

the possibility of a future on-line, electronic version of the Reference System, supported by

advanced updating and information retrieval techniques.

2.2 EXAMPLE USES

Instances of E&V technology may be found in two ways. A user may consult the

Guidebook directly, or may first consult the E&V Reference Manual, as pictured in Figure 1.1-

1. A user who comes directly to the Guidebook would typically first look at the Table of

Contents. For example, a user interested in evaluating compiler performance would naturally

look under Chapter 6 "Compilation System Assessors." The titles of Sections 6.2, "IDA

Benchmarks," and 6.3, "Ada Compiler Evaluation Capability (ACEC)," would probably suggest

themselves as relevant to this user's needs-as indeed they are.

Alternatively, the user may consult the E&V Reference Manual, which is designed to help

find E&V techniques in the same way that the card catalog helps people find books in the

library. For example, the Reference Manual contains both a Function Index and an Attribute

Index, each of which contains cross references to elements in the other. One element of the

Function Index is the function "Compilation," which is cross-referenced to a number of relevant

attributes. Under the particular function-attribute pair "Compilation-Processing Effectiveness"

2-3

E&V Guidebook, Version 3.0

are listed a number of Guidebook references. Among these are the same two Sections, 6.2 and

6.3, of the Guidebook, mentioned in the previous paragraph. The user following this procedure

could pick up the Guidebook and go directly to these two sections or "text frames" and find

summary information concerning the IDA Benchmarks test suite and the ACEC test suite,

respectively.

2.3 BIAS IN EVALUATION

Some elements of bias are inherent in all evaluation techniques. Examples of such

elements are given in the following paragraph. It is important that users of evaluation

techniques be aware of these built-in biases and use caution in the interpretation of results.

A tool or APSE that is "different" may receive an unfair evaluation because of an unintended

bias against new technology or a new concept of operations. The effects of bias can be

minimized, but not eliminated, by careful design of experiments. In some situations certain

elements of bias are actually desirable, as discussed in the final paragraph of this section.

Consider, for example, a whole-APSE evaluation based on a series of structured

experiments involving various portions of the life cycle. The items to be evaluated are

competing commercial software products--collections of tools integrated in some way. The

experiments are built around a model project, partially completed, and instructions to perform

specific life-cycle activities such as test and integration, configuration management, response

to a change in system requirements, or documentation updates. The outcome of such

experiments are inevitably influenced by factors that are not characteristics of the software

products under evaluation. These factors include: the skill and experience of the evaluation

team members, the management ability of the team leaders, the software development methods

ordinarily favored by the team members (as opposed to those best supported by the APSEs

under evaluation), the application domain of the model project (as opposed to those in which

team members are experienced), and other surrounding environmental factors.

The influence of the factors listed above can be controlled to some extent. For example,

it is possible to employ a sequence in which: in Phase 1 Team 1 does Model Project M on

APSE A while Team 2 does Model Project N on APSE B; in Phase 2 the teams exchange roles;

in Phase 3 they compare notes and write a joint evaluation report. This sort of approach can

2-4

E&V Guidebook, Version 3.0

be useful in removing bias, but is of course very expensive.

Before embarking on an APSE evaluation it is important to have a clear understanding of

the purpose of the evaluation. It is unlikely, for example, that the purpose of an APSE

evaluation project will be to select "the best APSE" in some general, global sense. It is more

likely that the purpose will be to select the best APSE for a particular project or sequence of

projects, to be used by a particular organization (with its unique history and preferences), in

a particular application domain. It is also possible that there is only one APSE available or

that an APSE has already been chosen. In this case the purpose of the evaluation includes

obtaining a better understanding of the characteristics of the APSE and the risks and costs

associated with its use in a particular application domain and with a particular development

methodology. In such cases it is quite legitimate for the evaluation to reflect organizational and

individual "biases." It is, after all, a particular group of individuals who will be asked to use

the APSE in a productive way. If they have a choice, they will want to choose an APSE that

supports their style. If the choice is already made, they will need to understand how the given

APSE supports, or fails to support, their preferred methods of operation. Thus, a "biased

evaluation" can be a desirable and necessary objective.

2-5

E&V Guidebook, Version 3.0

3. INTEGRATION OF APSE ASSESSMENTS

The purpose of this chapter is to provide high-level guidance for the user of the E&V

Reference System (Reference Manual and Guidebook) who is interested in evaluating an APSE

as a whole, or in comparing several APSEs with the objective of selecting one. While the

"formal chapters" (beginning with Chapter 4 of the Reference Manual and Chapter 4 of the

Guidebook) provide assistance in locating, defining, and assessing many individual aspects of

APSEs, they do not provide an overall approach to weighing and combining the results of such

assessments. Section 3.1 briefly discusses some relevant general background material. Section

3.2 discusses some earlier, partial efforts aimed at an integrated approach. Section 3.3 provides

some additional guidance leading to a comprehensive, integrated approach.

It is necessary, first, to distinguish the subject of this chapter-integrated whole-APSE

assessment-from the subject of Chapter 13-specific "Whole-APSE Assessors." The integrated

form of whole-APSE assessment (Section 3.3) involves a combining or mixing together of the

results of individual assessment steps to arrive at a decision. These individual steps may be

oriented toward specific functions or tools, or may be oriented toward a "whole APSE," in

relation to specific attributes or the APSE's performance in a specific life-cycle phase or

activity. Thus, a whole APSE assessor (Chapter 13) might be used to evaluate the APSE's

capability to support a project team during one major activity, such as preliminary design. The

results of such an assessment would become one of the weighted factors of an integrating

process leading to a major decision.

3.1 GENERAL BACKGROUND

Chapter 4 of this Guidebook contains synopses of books, articles, and documents. Some

of these have historical value and are also indirectly relevant to the topic of an integrated

approach to APSE evaluation because they provide definitions of an APSE or highlight issues

that may be important during APSE evaluations. The Stoneman document [@Buxton 1980]

defines an APSE as a layered system and includes some discussion of evaluation criteria. The

Common APSE Interface Set (CAIS) definition documents [@DoD 1986, @MIL 1989] describe

3-1

E&V Guidebook, Version 3.0

proposed interface requirements for interfaces that exist between layers of an APSE. The

motivation for these interface requirements is to support the transportability of tools and

project databases from one APSE to another. The book "Life Cycle Support in the Ada

Environment" by McDermid and Ripken [@McDermid 19841 takes a top-down approach to

defining a "coherent APSE," starting with requirements for a coherent life-cycle methodology;

see synopsis [4.10]. Several papers in an IEEE Tutorial [@Wasserman 1981] provide relevant

observations on desirable characteristics and major issues for Ada support environments; see

synopses [4.11, 4.12, 4.14]. A more recent survey paper "Characteristics and Functions of

Software Engineering Environments: An Overview" [@Houghton 1987] provides a broad

discussion of environments and the state of the art; see synopsis [4.15]. Chapter 3 of the E&V

Reference Manual [@RM: Whole APSE Assessment Issues 3.] presents various ways of

viewing an APSE and key whole-APSE attributes.

3.2 EARLY EFFORTS AT INTEGRATED APSE ASSESSMENT

The following quotation is from a paper by Henderson and Notkin [@Henderson 1987]:

Perhaps the biggest failing of environments research and development to date is the

general lack of scientific evaluation of exiting environments. Evaluation approaches

and actual evaluations are beginning to appear, but relatively little effort has been

given to this undeniably fundamental subject.

Some early efforts are mentioned briefly below.

The Software Engineering Institute (SEI) has developed a methodology [@Weiderman

1987] to evaluate certain aspects of APSEs. The methodology centers around the execution

of several experiments in the environment(s) to be evaluated. The experiments are designed

in a generic fashion and must be tailored or "instantiated" for each specific environment; see

synopsis [4.13]. The early applications, by the SEI, of this methodology were aimed at limited

objectives (see [7.9, 8.2, 10.1, and I1.2]), and are not examples of integrated whole-APSE

asse:,sments. However, the SEI methodology has been applied by TRW to a broad-gauged,

whole-APSE selection process; see [@Gray 1987]. It is apparent that industry has devoted

resources internally to comparative assessment of commercial APSEs. However, other than

3-2

E&V Guidebook, Version 3.0

Gray's paper, little has yet been published in the open literature describing the techniques

employed.

The book "Selecting an Ada Environment" [@Lyons 1986], written by the Ada Europe

Environment Working Group, provides background discussion about a broad range of topics.

In each chapter and section it provides a list of questions to be asked about the environment

under consideration- see synopsis [4.9]. Some of the chapters and questions listed have a

definite "integrated whole-APSE assessment" flavor. The whole-APSE checklist [14.2] has been

adapted from material of this book.

3.3 TOWARDS A COMPREHENSIVE APPROACH

The published literature on assessment of software engineering environments does not

include descriptions of "decision support" irient-d -prc~ches. (But, see the dissertation

[@Lawlis 1989].) A decision support system is one that leads a user through a structured

framework that includes weighting factors and decision criteria, and supports a final decision

process. As applied to APSE assessment this kind of approach would support a final decision.

such as, whether a single APSE under consideration is "good enough," or which of several

APSEs under consideration is "best."

The following characteristics appear to be appropriate for a decision support system

designed for integrated APSE assessment:

* The system should allow the specification of a list of "essential features"
that are absolutely required for the contemplated application or family of
applications. Ideally, each of these essential features would be subject to a
question or test that yields an unambiguous "yes/no" result-yes, the re-
quired feature is present, or no, it is missing.

* The system should allow the specification of a second list of attributes and
function-attribute pairs that represent desirable features or criteria, which
should be involved in an integrated assessment.

3-3

E&V Guidebook, Version 3.0

* The system should allow for specification of "weights" to be applied to
each attribute and function-attribute pair in the second list. The weights
will typically be chosen subjectively by the assessment participants.

* The system should include a mechanism to document/identify the method
of assessment used foi every test/metric to be employed in addressing every
essential and desirable feature.

* The system should include a well-defined method of combination, leading
to an overall set of pre-decision results. For example, the results may be
summarized in two lines as in:
1) satisfies all essential requirements (listed in Table A)
2) scores 72 out of possible 100 (based on weights in Table B).

The characteristics outlined above represent a general framework that can be applied very

differently by different users. At one extreme is a decision maker with little time or resources,

who focuses on a short list of essential features only, and accepts answers supplied by vendors

or vendor documentation. At the other extreme is a team of APSE assessors who conduct a

comprehensive, detailed set of tests and "model project" experiments and expend multiple

person-years of effort in a comparative, hands-on assessment of competing APSEs.

It is also possible that two assessment teams applying equal resources might differ greatly

in the manner of their assessments. One might view the APSE as a support system for a

particular life-cycle methodology adopted by its organization. Another might view the APSE

as a project database management system. These two teams would be likely to use very

different tests, or very different weights where the same tests are used. Neither is necessarily

right or wrong. In the final analysis, it is the software developer's responsibility to understand

his own application area and the most critical attributes of his development support

environment.

3-4

E&V Guidebook, Version 3.0

4. SYNOPSES

The purpose of this chapter is to provide a single place in the Guidebook for synopses of

documents (or other resources), which have too broad a scope to fit within one of the

subsequent Chapters. In some cases the subject document appears only in this Chapter

because it does not contain specific instances of E&V technology. For example, the Stoneman

document [@Buxton 1980] does not deal with evaluation or validation of APSEs, but it has

general historical importance to the entire field of Ada environments and has been selected as

the first document to be synopsized. Synopses describing APSE standards that may require

validation are also included, such as the entries for the CAIS and IRDS. Finally, a particular

document may contain multiple instances of E&V technology, which are themselves summarized

or referenced in multiple parts of the Guidebook. These multiple instances can be thought of

as children of a common parent. In order to avoid the redundancy of summarizing the parent

document many times, the Chapter 4 synopsis is provided as a common point to which all the

children may refer. The formal grammar used to structure the entries in subsequent chapters

includes, therefore, a mechanism for referring back to the synopsis contained in Chapter 4.

Similarly, after each synopsis there is a provision for forward references to specific techniques

(if any) described in later chapters.

Most of the documents synopsized in this chapter are readily available through public

sources. A few of them may be difficult or impossible to obtain for some readers; these were

included because the synopsis itself was judged to be helpful in filling in a piece of the historical

background.

4-1

E&V Guidebook, Version 3.0

4.1 STONEMAN

Citations: [Buxton 1980] J.N. Buxton, "Requirements for Ada Programming Support Environ-
ments-STONEMAN," U.S. Department of Defense, February 1980, DTIC Number AD
AI00 404.

Synopsis: The Stoneman document defines the APSE as a layered system. The innermost layer
is referred to as the Kernel APSE, or KAPSE. The KAPSE is machine-dependent and
includes the database functions and other general operating system support functions. The
next layer, the Minimal APSE, or MAPSE, consists of the minimal set of tools which can
support the development of software. The outermost layer, the APSE, consists of tools and
functions that are project dependent. In addition to providing guidance for APSE
designers, the Stoneman document provides some evaluation criteria for APSEs.

4-2

E&V Guidebook, Version 3.0

4.2 HOUGHTON: A TAXONOMY OF TOOL FEATURES FOR THE Ada PROGRAM-
MING SUPPORT ENVIRONMENT (APSE)

Citations: [Houghton 1983] R.C., Houghton, Jr., "A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE)," National Bureau of Standards, NBSIR-81-
2625, February 1983.

Synopsis: This paper puts forth a taxonomic classification of APSE features. The features
included satisfy the criteria that they are "within current technology" and are "oriented to
the Ada language." The top two levels of the classification are as follows:

Input
Subject
Control Input

Function
Transformation
Management
Static Analysis
Dynamic Analysis

Output
User Output
Machine Output

For each of the second-level elements above, a third-level list is given, and some discussion
is provided. The paper includes the results of a survey in which the second and third-level
elements under "Function" are each rated as "Required,' ''Important," or "Useful."

4-3

E&V Guidebook, Version 3.0

4.3 E&V REPORT: DoD APSE ANALYSIS

Citations: [Castor 1984] V.L. Castor, "DoD APSE Analysis Report, Draft Version 1.0," 31
August 1984, Appendix C of "Evaluation and Validation (E&V) Team Public Report", Air
Force Wright Aeronautical Laboratories, November 1984, DTIC Number AD A153 609.

Synopsis: The DoD Ada Programming Support Environment (APSE) Analysis Document was
prepared by the APSE Working Group (APSEWG) of the E&V Team. It contains a
description and analysis of the Ada programming support environments developed by each
of the armed services. The three environments analyzed were the Air Force's Ada
Integrated Environment (ALE), the Army's Ada Language System (ALS), and the Navy's
Ada Language System/Navy (ALS/N). The design documentation was used to determine
the functionality contained in each programming environment. The functions were
described in a taxonomy in order to determine the commonality and differences of each
system. The taxonomy developed for this purpose was an expanded version of the function
part of the taxonomy developed earlier by Houghton [@Houghton 1983]; see synopsis [4.2].

4-4

E&V Guidebook, Version 3.0

4.4 CLASSIFICATION SCHEMA/E&V TAXONOMY CHECKLISTS

Citations: [E&V Schema 19871 "E&V Classification Schema Report," TASC, TR-5234-2,
Version 1.0, 15 June 1987.

Synopsis: The purpose of this document was to set forth a schema, or a framework, to be used
in subsequent E&V documents, especially the E&V Reference Manual [@RM]. The
Function Index of the schema was strongly influenced by earlier documents, such as
Houghton's taxonomy [4.2], the DoD APSE Analysis Report [4.3], and the SEE tool
features taxonomy [@Kean 1985]. The upper levels of the Function Index of the schema
became the initial version of the Function Index of the Reference Manual. The lower
levels were found to incorporate a large number of tool functions which could be evaluative
in nature. These tool function features have been carried over into the Guidebook as
capability assessment checklists. As a group, they are considered the Classification Schema
Checklists.

Methods:
[Compilation Checklist 6.8;
Program Library Management Checklist 6.9;
Linking/Loading Checklist 7.2;
Import/Export Capabilities Checklist 7.3;
Debugging Capabilities Checklist 7.5;
Real-Time Analysis Capabilities Checklist 7.7;
Configuration Management Capabilities Checklist 11.1;
Electronic Mail Capabilities Checklist 15.3;
Text Editing Capabilities Checklist 16.1]

4-5

E&V Guidebook, Version 3.0

4.5 REQUIREMENTS FOR E&V

Citations: [Szymanski 1987] R. Szymanski, "Requirements for Evaluation and Validation of Ada
Programming Support Environments, Version 2.0," 4 December 1986, Appendix D of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright Aeronautical
Laboratories, September 1987, DTIC Number AD A196 164.

[Castor 1984] V.L. Castor, "Requirements for Evaluation and Validation of Ada
Programming Support Environments, Version 1.0," 17 October 1984, Appendix B of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright Aeronautical
Laboratories, November 1984, DTIC Number AD A153 609.

Synopsis: This document was prepared by the Requirements Working Group (REQWG) of the
E&V Team. Its purpose is to set forth requirements on the E&V Project. It is intended
for use by the E&V Team and by the E&V Project contractors in developing technology
for the evaluation and validation of APSEs. However, its use in other E&V efforts is
encouraged. The document contains three categories of requirements: (1) those on the
E&V Team itself, (2) those on the E&V methods and procedures, and (3) those specifying
what is to be evaluated or validated. See also the Tools and Aids Document, synopsis
[4.6].

Version 1.0 of the document contains three questionnaires for assessing: command
language interpreters, compilers, and configuration management tools.

Methods:
[Compiler Assessment Questionnaire 6.12;
Command Language Interpreter Assessment Questionnaire 9.3;
Configuration Management Assessment Questionnaire 11.3]

4-6

E&V Guidebook, Version 3.0

4.6 TOOLS AND AIDS FOR E&V

Citations: [Szymanski 19901 R. Szymanski, "Evaluation and Validation (E&V) Team Public
Report," Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, December
1990, Appendix ?, DTIC Number to be assigned.

Synopsis: This document was prepared by the Requirements Working Group (REQWG) of the
E&V Team. It identifies the community's E&V technology needs, provides definitions of
those needs, and prioritizes them. The purpose of this document is to provide pertinent
information to those agencies willing and able to fund the development of E&V
technology. It reflects the E&V Requirements Document (see synopsis [4.5]) and views
on the subject obtained from surveys conducted among the E&V Team and appropriate
ARPANET-MILNet Interest Groups.

4-7

E&V Guidebook, Version 3.0

4.7 STARS-SEE OPERATIONAL CONCEPT DOCUMENT

Citations: [STARS 1985] "Proposed Version 001.0," STARS Joint Service Team for Software
Engineering Environments, Stars Joint Program Office, October 1985.

Synopsis: The Software Technology for Adaptable, Reliable Systems-Software Engineering
Environment (STARS-SEE) Operational Concept Document (OCD) presents requirements
from the perspective of the STARS-SEE users. It represents a consensus among the
Government agencies responsible for SEE development and support, STARS-SEE
implementors, and potential users. Major sections of the document describe the STARS-
SEE mission, operational and support environments, and system components and functions.
The primary mission centers on the development, support, reuse, management, and control
of mission critical software. The STARS-SEE system is defined to consist of the people,
computers, software, and procedures needed to perform the mission.

Major topics discussed include:

• the types of users and associated software activities

* the function of the Integration and Compatibility Framework

* the capabilities required by the Information Storage and Retrieval System

* the functional capabilities of the SEE

* the SEE-user interaction

* the hardware and software characteristics of the computer system.

The functional capabilities address project planning and control, requirements specification
and analysis, design specification and analysis, software prototyping and modeling,
reusability, program generation and unit testing, integration testing, quality assurance,
verification and validation, configuration management, software/hardware integration, post
deployment software support, project communications, generation of documents, data
collection, performance and productivity measurement, help and training for STARS-SEE
users, the transition to and tailoring of the STARS-SEE, and knowledge engineering.

4-8

E&V Guidebook, Version 3.0

4.8 GRUND, ET AL.: KEY CHARACTERISTICS OF APSES

Citations: [Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics of
Ada Programming Support Environments," MITRE Corporation, ESD-TR-85-144, MTR-
9590, July 1985, DTIC Number AD B096 137.

Synopsis: This document is intended to provide basic information about Ada Programming
Support Environments for people concerned with the specification or selection of an APSE.
Section 1 summarizes the STONEMAN APSE requirements. Section 2 describes desirable
characteristics of APSEs in five areas: compilers, run-time environments, databases,
configuration management tools, and editors. A short list of questions to ask in each area
is included. Section 3 describes four Ada programming support products available or
under development in early 1985 in terms of their capabilities in the same five areas.

4-9

E&V Guidebook, Version 3.0

4.9 Ada-EUROPE: SELECTING AN Ada ENVIRONMENT

Citations: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D. Nissen,
Ada-Europe Working Group, Cambridge University Press, 1986.

Synopsis: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided.

The most significant aspect of this book is not that it provides all of the answers, but that
it raises the proper questions. It provides a good companion guide for specifying, building,
selecting, and using an environment. In addition, it provides a synopsis of the industry's
best understanding of the environment issues to date.

The structure is represented by the table of contents of the guide, reproduced in part
below.

Part A Host and Target Considerations
2. Underlying machine
3. Target machine

Part B Kernel
4. Database, schema and typing
5. Versions, configurations and history
6. Security and integrity
7. Language issues and run-time support
8. Interaction between programs

Part C Aids for Tool Building
9. Meta-tools and tool components

Part D Man-Machine Interaction
10. Administrative aspects
11. The user interface
12. Help, error and warning messages

Part E Tool Functions
13. Office automation aspects
14. Static analysis, compilation and the program library
15. Testing, debugging and dynamic analysis
16. Project and product management
17. Life cycle support

Part F Other Issues
18. Performance of the environment
19. Contractual matters

4-10

E&V Guidebook, Version 3.0

Methods:
[Ada-Europe: Debugging Questionnaire 7.10;
Ada-Europe: Testing and Dynamic Analysis Questionnaire 8.4;
Ada-Europe: Meta-tools and Tool Components Questionnaire 9.4;
Ada-Europe: Product Management Questionnaire 11.4;
Ada-Europe Ada Environment Questionnaires 14.2;
Ada-Europe: Program Interaction Questionnaire 14.5;
Ada-Europe: Project Management Questionnaire 16.7]

4-11

E&V Guidebook, Version 3.0

4.10 MCDERMID AND RIPKEN: LIFE CYCLE SUPPORT IN THE Ada ENVIRON-
MENT

Citations: [McDermid 19841 J. McDermid and K. Ripken, "Life Cycle Support in the Ada
Environment," Cambridge University Press, 1984.

Synopsis: This book contrasts its own approach to APSE development with that of the
Stoneman report [@Buxton 1980]. Stoneman takes a bottom-up approach, starting with
a kernel and minimal APSE (KAPSE and MAPSE), as a foundation for extensions to more
powerful and better integrated environments. McDermid and Ripken follow a top-down
approach by defining requirements for a coherent life-cycle methodology. They then
describe a particular instance of a coherent methodology, as a combination of existing
methods used in various life-cycle phases. This description becomes the basis for a
definition of a "coherent APSE" that supports the entire life cycle.

The authors use a seven-phase life cycle and state requirements for each phase in terms
of

• a system representation form

* a transformation method

* a verification activity.

Table 4.10-1 lists the names of the seven phases (each named for its principal output) and
the methods selected for each.

Table 4.10-1 Example Coherent Methodology

PHASE (OUTPUT) SELECTED METHOD

Requirements Expression CORE
System Specification A-7 Techniques
Abstract Functional Specification A-7 Techniques
Module Specification Ada and ANNA
Module Design Ada and ANNA
Module Code Ada and ANNA
Executable System

The authors are not completely satisfied with all of the methods chosen, and point out
shortcomings in each case. They suggest the book be used as "a reference point for further
work on APSE design and development." They stress that the coherence of the methods
and ease of transition from one phase to the next is an important attribute. They also
outline a phased development plan in which a larger scale APSE might be developed in
the following three steps:

4-12

E&V Guidebook, Version 3.0

" a "Clerical Support APSE"

" a "V&V and Management Support APSE"

* a "Transformation Support APSE."

4-13

E&V Guidebook, Version 3.0

4.11 NOTKIN AND HABERMANN: SOFTWARE DEVELOPMENT ENVIRONMENT
ISSUES AS RELATED TO Ada

Citations: [Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development
Environment Issues as Related to Ada," in "Tutorial: Software Development Environ-
ments," ed. A.I. Wasserman, IEEE, 1981, pp. 107-133.

Synopsis: This paper addresses software development problems that arise in three areas:
programming, system composition, and management. In each area traditional methods and
tools are contrasted with a more integrated approach exemplified by an experimental
environment named Gandalf.

"Programming issues are those that arise when a single programmer takes a program all
the way from its specifications to a working program."

"System composition issues are those that arise when a system (or a version of a system)
is built by integrating many programs into one." "The two basic problems in system
composition are interface control and version control." Traditional methods use isolated
tools "coordinated by memory...or scraps of paper."

"Management issues are those that arise when a group of more than one person develops
and maintains a system over a period of time." Three problem categories are addressed:
misunderstanding, lack of information, and conflict of interest. Traditionally, these
problems have been handled by non-technical means. The problem with the management
approach to a management environment is that the solution to human interaction
difficulties is treated by the introduction of more human interaction.

Although this paper was not written as an example of E&V technology, the following list
of environment software requirements (paraphrased from the paper) may be used as a
high-level checklist:

* Concurrent multiple users must be supported

* An efficient implementation of Ada must be possible

• Efficient support for data base manipulations is needed

* A good file system is essential

* An extensible command language is needed.

It is also pointed out that the most important hardware requirement is that the software
requirements listed above must be supported.

4-14

E&V Guidebook, Version 3.0

4.12 STENNING, ET AL.: THE Ada ENVIRONMENT: A PERSPECTIVE

Citations: [Stenning 19811 V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada
Environment: a Perspective," in "Tutorial: Software Development Environments," ed. A.I.
Wasserman, IEEE, 1981, pp. 36-46.

Synopsis: This paper discusses the objectives and the design of the Ada Programming Support
Environment. It is strongly influenced by the United Kingdom Ministry of Defense Ada
Support System Study, which was initiated by the MoD in January 1979. According to the
paper, the DoD KAPSE/MAPSE/APSE approach is strongly recommended to achieve
portability. The APSE should be designed to support a project throughout its life cycle.
Furthermore, it should be an open-ended environment. This would allow for the user to
extend or modify existing tools. A basic configuration control manager, a complete user
interface, and a complete basic tool set are necessary to develop an Ada Environment
which will improve program reliability, life-cycle program costs, and promote portability.

4-15

E&V Guidebook, Version 3.0

4.13 WEIDERMAN: EVALUATION OF Ada ENVIRONMENTS

Citations: [Weiderman 1987] N.H. Weiderman and A.N. Habermann, "Evaluation of Ada
Environments," Software Engineering Institute, Technical Report CMU/SEI-87-TR-1,
March 1987, DTIC Number AD A180 905.

Synopsis: In response to the lack of available research about the selection of APSEs, the
Software Engineering Institute (SEI) has developed a methodology to evaluate these
environments. The methodology centers around the execution of several experiments in
the environment to be evaluated. Several experiments have been developed in the
following areas: System Management; Configuration Management/Version Control; Design
and Code Development; Unit Testing and Debugging. The environments are evaluated
in terms of functionality, performance, user interfaces, and system interfaces. The need
for an evaluator to tailor an evaluation technique to a specific environment is addressed
by the SEI study. The experiments that have been designed are generic experiments. The
evaluator derives, or "instantiates," the environment-specific technique from the generic
experiment. In the final phase of the evaluation, the results are analyzed. An advantage
of the application of this methodology is that results can be compared from one
environment to another. See also a paper describing an application of the SET's method
[@Gray 1987].

Methods:
[SEI Debugging Experiment 7.9;
SEI Unit Testing Experiment 8.2;
SEI Design Support Experiment 10.1;
SEI Configuration Management Experiment 11.2]

4-16

E&V Guidebook, Version 3.0

4.14 BARSTOW AND SHROBE: OBSERVATIONS ON INTERACTIVE PROGRAM-
MING ENVIRONMENTS

Citations: [Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive
Programming Environments," in "Tutorial: Software Development Environments," ed. A.I.
Wasserman, IEEE, 1981, pp. 285-301.

Synopsis: This paper reviews key features of LISP-based environments and comments upon
lessons learned from these environments and future directions. These environments
encourage a "progressive enrichment" style of development rather than developments
broken into distinct phases such as specification, implementation, and maintenance. The
following set of lessons (described more fully in the paper) are concerned with the
programmer's perception of the environment:

* It is important to be able to run an incomplete program.

* The user should be able to view the program from many different natural
viewpoints, most of which are "structured" in nature.

* Intercommunication among tools is extremely important.

* The programmer should not be required to know the details of the particu-
lar language definition used in the current implementation.

• The environment's interface must be highly tuned to be as natural as
possible for the human programmer.

Environment characteristics created with these lessons in mind "lead to the ultimate goal
of a programming environment (which is to increase the ability of the programmer to
communicate with the computer) by taking advantage of as many naturally occurring
structures as possible."

4-17

E&V Guidebook, Version 3.0

4.15 HOUGHTON AND WALLACE: CHARACTERISTICS AND FUNCTIONS OF
SOFTWARE ENGINEERING ENVIRONMENTS: AN OVERVIEW

Citations: [Houghton 1987] R.C. Houghton, Jr. and D.R. Wallace, "Characteristics and
Functions of Software Engineering Environments: An Overview," ACM Software
Engineering Notes, Vol. 12 Number 1, January 1987.

Synopsis: This paper provides a comprehensive discussion of software engineering environments
in general, with no focus on Ada or any specific language. Some major topics discussed are:

• Environment Types and Life Cycle Relationships

* Integration

* Human Factors

* Analysis and Software Quality

* Support for Different Types of Users

" Support for Application

* Hardware Support

• Levels of Support.

In its concluding section, the paper stresses that software engineering environments should
be viewed as systems that support broad categories of users and tasks throughout the full
life cycle.

4-18

E&V Guidebook, Version 3.0

4.16 CATS AND CATS-A: DoD-STD-1838 AND MIL-STD-1838A

Citations: [DoD 1986] DoD-STD-1838, Common APSE Interface Set (CAIS), U.S.
Department of Defense, 9 October 1986, DTIC Number AD A157 589.

[DoD 1989] "Common APSE Interface Set, Revision A," MIL-STD-1838A, April 1989,
DTIC Number AD A157 589.

Synopsis: DoD-STD-1838, hereafter called CAIS, was developed by the KAPSE Interface Team
(KIT) and the KAPSE Interface Team for Industry and Academia (KITIA) during the
period from 1981 to 1986 as a first evolutionary step towards a full state-of-the-art common
APSE interface standard.

The CAIS is designed to promote source-level portability of Ada programs, especially Ada
software development tools. The goal of the CAIS is to promote interoperability (of
database objects) and transportability (of APSE tools) of Ada software across Department
of Defense (DoD) APSEs. See also the overview paper [@Oberndorf 1988].

CAIS-A is a set of Ada package interfaces designed to enhance the transportability of Ada
Support Environment Tools. The scope of the CAIS-A includes the functionality affecting
transportability that is needed by tools, but not provided by the language. The CAIS-A
contains definitions for an entity management system for software engineering tools. The
primitive entities defined allow for the manipulation of devices, files, and processes. CAIS-
A is based on an entity-relationship approach and it allows the user to define entities, in
a limited way, by means of a typing mechanism. CAIS-A also includes functionality to
support tools requiring transaction processing, a rudimentary triggering mechanism, and
explicit control over APSE distribution.

The CAIS-A was developed by SofTech under contract to Naval Ocean Systems Center.
CAIS-A is a design enhancement to the existing CAIS (DoD-STD-1838), which was
developed by the KIT and KITIA as a first evolutionary step towards a full, state-of-the-art
interface standard. Designers view CAIS-A as the next step in that evolutionary process.

4-19

E&V Guidebook, Version 3.0

4.17 NISSEN, ET AL: GUIDELINES FOR Ada COMPILER SPECIFICATION AND
SELECTION

Citations: [Nissen 1984] J.C.D. Nissen, B.A. Wichmann, et al., "Guidelines for Ada Compiler
Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W.Rogers, Cambridge University Press, 1984.

Synopsis: Members of Ada-Europe produced this set of guidelines based upon a taxonomy of
compiler features. Their caveat is clear: "The relative value of information about different
features of the compiler is a matter of judgment and circumstance.... It is the reader's
responsibility to weigh each factor according to his requirements. No liability of whatever
kind shall be carried by the authors."

The taxonomy is represented by the table of contents of the guide, reproduced in part
below.

2. Host and target
3. Language-related issues
4. User-interfacing and facilities

4.1 Compiler invocation and listing management
4.2 Compilation options
4.3 Other features
4.4 Errors and warnings
4.5 Other software supplied
4.6 Compilation management

5. Performance and capacity
5.1 Host performance and capacity
5.2 Target code performance

6. Compiler and run-time interfacing
6.1 Compiler issues
6.2 Run-time system issues

7. Retargetting and rehosting
7.1 Introduction and definitions
7.2 Retargetting
7.3 Rehosting

8. Contractual matters
9. Validation

Chapter 2, Host and Target, briefly treats compiler configuration issues, and provides a
questionnaire [Host and Target Questionnaire 5.1].

Chapter 3, Language-related issues, extracts from the Ada language reference manual
[@DoD 1983] those features explicitly allowed to vary based upon machine specific
characteristics [Machine-specific Characteristics Questionnaire 5.2].

4-20

E&V Guidebook, Version 3.0

Methods:
[Host and Target Questionnaire 5.1;
Machine-specific Characteristics Questionnaire 5.2;
Ada Compiler Specification and Selection Questionnaires 6.18)

4-21

E&V Guidebook, Version 3.0

4.18 WEIDERMAN: COMPILER EVALUATION AND SELECTION

Citations: [Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler
Evaluation and Selection, Version 1.0," Software Engineering Institute, CMU/SEI-89-TR-
13, March 1989, DTIC Number AD A207 717.

Synopsis: The following Abstract is quoted directly from the cited document:
The evaluation and selection of an Ada compilation system for a project is a
complex and costly process. Failure to thoroughly evaluate an Ada compila-
tion system for a particular user application will increase project risk and may
result in cost and schedule overruns. The purpose of this handbook is to
convince the reader of the difficulty and importance of evaluating an Ada
compilation system (even when there is no freedom of choice). The handbook
describes the dimensions along which a compilation system should be
evaluated, enumerates some of the criteria that should be considered along
each dimension, and provides guidance with respect to a strategy for
evaluation. The handbook does not provide a cookbook for evaluation and
selection. Nor does it provide information on specific compilation systems or
compare different compilation systems. Rather it serves as a reference
document to inform users of the options available when evaluating and
selecting an Ada compilation system.

The chapter headings are as follows:

1. Introduction
2. Common Questions
3. Compiler Validation and Evaluation
4. Practical Issues of Selecting an Ada Compiler
5. Compile/Link-Time Issues
6. Execution-Time Issues
7. Support Tool Issues
8. Benchmarking Issues
9. Test Suites and Other Available Technology

In Chapters 4 through 8 there are a number of lists (some annotated) of criteria, factors,
features, and questions to be asked. Some of these are synopsized in, or have influenced,
later sections of this document, as indicated below.

Methods:
[Weiderman: Compiler Evaluation Lists 6.13;
Vendor Evaluation Questionnaire 5.5]

4-22

E&V Guidebook, Version 3.0

4.19 Ada PERFORMANCE ISSUES (PIWG SPECIAL EDITION)

Citations: [PIWG 19901 "Ada Performance Issues," Ada Letters, Special Edition from SIGAda,
the ACM Special Interest Group on Ada Performance Issues Working Group, Vol. X,
Number 3, Winter 1990.

Synopsis: This document, which was prepared by the Performance Issues Working Group
(PIWG) of ACM/SIGAda, has three major parts: (I) Preface, (II) Rationale, and (1II)
Results. The Preface introduces the general topic of Ada performance assessment and
distinguishes between language issues, compile-time issues, execution-time issues, and
performance measurement issues. The Rationale provides a collection of chapters and
invited papers covering a spectrum of topics such as benchmarking philosophy and
taxonomy, the time problem, the space problem, parallel and distributed issues,
optimization, and the PIWG's own measurement methodology. The Results part of the
document presents a detailed, tabular summary of performance measurements generated
by a number of PIWG volunteers and vendors who have used the PIWG test suite. Several
of the items in Part II, as well as a further discussion of the PIWG test suite itself, are
summarized in later sections of this Guidebook, as listed below.

Methods:
[PIWG Benchmark Tests 6.4;
Hartsone Synthetic Tests 6.15;
Ada Compiler Performance Test Suite (ACPS) 6.16;
Performance of Parallel Ada 12.11

4-23

E&V Guidebook, Version 3.0

4.20 SOFTWARE TOOL EVALUATION MODEL (STEM)

Citations: [STSC 19901 "STSC Strategy," USAF STSC - HQ USAF/SC Joint Software
Conference Proceedings, Salt Lake City, 23-26 April 1990.

[Berk 1990] K.J. Berk and R.P. Hanrahan, "Evaluating Tools and Environments Concept,"
Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, NAECON
1990, May 1990, Volume 2, pp. 658-663.

Synopsis: The Software Technology Support Center (STSC) at Hill AFB "will provide Air
Force users with a focal point for current information about software tools, development,
,,'e,-ance environments, and methods. STSC will provide this irfc-rmation to al!
requesting Air Force organizations. This information will cover the software acquisition,
development, and maintenance life-cycle." Several of the activities of the STSC are
centered around the Software Tool Evaluation Model (STEM). "STEM is a framework
to coordinate STSC's activities, tools, methods, and environments. STEM will be a
reference or an ideal to which actual software tools and environments can be compared.
STEM will also provide a categorization scheme for classifying individual software tools.
These tool categories will be important in creating the computer data bases that contain
user-accessible information about tools. Finally, STEM will be a standard by which
specifications can be written for defining and acquiring new tools and software engineering
environments." An early activity of STSC is the preparation and distributution of "a data
base (called Toolbox/PC) that contains basic information about selected available tools and
provides a mechanism for collecting user information about additional tools and user
needs."

There have been STSC-sponsored efforts to assess tools in three categories (Test,
Requirements and Design, and Documentation) as indicated below.

Methods:
[STEM/SAIC Test Tools Evaluation 8.3;
STEM/Draper Req/Design Tools Evaluation 10.6;
STEM/TRW Documentation Tools Evaluation 16.6]

4-24

E&V Guidebook, Version 3.0

4.21 INFORMATION RESOURCE DICTIONARY SYSTEM (IRDS)

Citations: [ANSI 1988] "Information Resource Dictionary System (IRDS)," American National
Standard for Information Systems, ANSI X3.138-1988, American National Standards
Institute, Inc., New York, NY, 1988.

[Law 1988] M.H. Law, "Guide to Information Resource Dictionary System Applications:
General Concepts and Strategic Systems Planning," NBS Special Publication 500-152,
National Bureau of Standards, Gaithersburg, MD, April 1988.

[FIPS 1989] "Information Resource Dictionary System (IRDS)," Federal Information
Processing Standard Publication, FIPS PUB 156, National Institute of Standards and
Technology, Gaithersburg, MD, April 5, 1989.

Synopsis: The Information Resource Dictionary System (IRDS) is an American National
Standards Institute (ANSI) standard approved in 1988. It has also been adopted as a
Federal Information Processing Standard (FIPS) in 1989. The standard establishes the
requirements for an IRDS, a data repository which can be used to control, describe,
protect, document, and facilitate use of an installation's information resources. Work on
the standard began in 1980.

The IRDS standard is made up of seven modules:

* Core standard

* Basic functional schema

• IRDS security

* Extensible life cycle phase facility

• IRDS procedures

* Application program interface

* Services interface.

The core standard provides a number of useful facilities: entity naming conventions, a
command or panel user interface, import-export interface, version naming, life cycle
control, views, and more. The basic functional schema is a data model provided to support
an organization's information processing needs. The IRDS security facilities provides the
ability to define access controls for dictionary development, maintenance, and use on both
a global and entity basis. The extensible life cycle phase facility extends the life cycle
capabilities of the core by implementing integrity rules and customization features to
control the movement of entities through the life cycle or, in other words, aids in the
transition from one development phase to the next. The IRDS procedures provide the

4-25

E&V Guidebook, Version 3.0

ability to define, store, maintain, and execute procedures. The appliec!#on -r oJgram

interface provides access to the IRDS from traditional procedural , such as
COBOL or FORTRAN for the purpose of building tools that use the IRD data. The
services interface is really a low-level processor-to-processor interface that is still being
defined.

4-26

E&V Guidebook, Version 3.0

5. GENERAL PURPOSE ASSESSORS

These assessors examine the characteristics of APSEs or APSE components that are

independent of the function(s) implemented by the APSE or component. These assessors are

therefore applicable to all components within the APSE since they are used to determine

qualities such as usability, expandability and flexibility, interoperability, rtusability, and

transportability in a general sense.

5.1 HOST AND TARGET QUESTIONNAIRE

Purpose: Evaluation of tools relative to host and target configurations.

[@, RM: Rehos(ahifily 6.4.26:
C RM: Retargetabilitv 6.4281

Primary References: [Nissen 1984] J.C.D. Nissen, B.A. Wichmann, et al., "Guidelines for Ada
Compiler Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W. Rogers, Cambridge University Press, 1984.

[Nissen, et al.: Guidelines For Ada Compiler Specification And Selection 4.17]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire
Inputs: Questionnaire and tool documentation.
Process: Fill in the appropriate answers in the following questionnaire.

a) Host configuration(s) required
b) Host operating system(s) required
c) Target configuration(s) supported
d) Target operating system(s) supported
e) APSE(s) supported, if applicable
) Host-target communication supported

i) program loading
ii) program execution and debugging.

Outputs: A completed list which characterizes the tool relative to host-target issues.

5-1

E&V Guidebook, Version 3.0

5.2 MACHINE-SPECIFIC CHARACTERISTICS QUESTIONNAIRE

Purpose: Evaluation of tools relative to machine-specific characteristics.

[@RM: Rehostability 6.4.26;

@RM: Retargetability 6.4.281

Primary References: [Nissen 1984] J.C.D. Nissen, B.A. Wichmann, et al., "Guidelines for Ada
Compiler Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W. Rogers, Cambridge University Press, 1984.

[Nissen, et al.: Guidelines For Ada Compiler Specification And Selection 4.17]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire and tool documentation.
Process: Fill in the appropriate answers in the following questionnaire.

[@.DoD 1983: Lexical Elements 2.]
* [@DoD 1983: 2.1] Character set of the host and target
* f@DoD 1983: 2.2] Maximum number of characters on a line of the host

and target
* [@DoD 1983: 2.3, 2.4] Is the maximum character length of an identifier or

numerical literal restricted other than by line length
* [@DoD 1983: 2.8, F.] The form, allowed place, and effect of every imple-

mentation-defined pragma

[C DoD 1983: Declarations and Types 3.]
* [@DoD 1983: 3.2.1] The effect of using uninitialized variables-does the

compiler flag or reject program that depends upon such variables
* [@DoD 1983: 3.5.1] The maximum number of elements in an enumeration

type
* [@DoD 1983: 3.5.4] The values of:

- INTEGER'FIRST
- SHORT INTEGER'FIRST
- LONG INTEGER'FIRST
- INTEGER'LAST
- SHORT INTEGER'LAST
- LONG INTEGER'LAST

* [@DoD 1983: 3.5.8] The values of:
- FLOAT'DIGITS
- SHORT FLOAT'DIGITS
- LONGFLOAT'DIGITS

[(@DoD 1983: Names and Expressions 4.]
* [@DoD 1983: 4.10] Is there a limit on the range of universal values which

5-2

E&V Guidebook, Version 3.0

exceeds the capacity of the compiler
[@DoD 1983: 4.10] Is there a limit on the accuracy real universal expres-
sions

[@DoD 1983: Tasks 9.]
* [@DoD 1983: 9.6] The values of:

- DURATION'DELTA
- DURATION'SMALL
- DURATION'FIRST
- DURATION'LAST

" [@DoD 1983: 9.8] The values of:
- PRIORITY'FIRST
- PRIORITY'LAST

* [@DoD 1983: 9.11] The restrictions on shared variables

[@DoD 1983: Program Structure and Compilation Issues 10.]
" [@DoD 1983: 10.1] Initiation, communication with, and restrictions on the

main program
* [@DoD 1983: 10.5] When tasks initiated in imported library units will

terminate

[@'DoD 1983: Exceptions 11.]
* [@DoD 1983: 11.11 Conditions under which these exceptions are raised:

- NUMERIC ERROR
- PROGRAM ERROR
- STORAGE ERROR

[@.DoD 1983: Representation Clauses and Implementation-Dependent Features 13.]
" [@DoD 1983: 13.4, F.] The list of all restrictions on representation clauses
* [@DoD 1983: 13.1, F.] The conventions used for any system generated

name denoting system dependent components
* [@DoD 1983: 13.5, F.] The interpretation of expressions that appear in

address clauses, including those for interrupts
* [@DoD 1983: 13.7] The specification of package SYSTEM; which includes

the values of:
- MIN INT
- MAX INT
- MAX DIGITS
- MAX MANTISSA
- FINE DELTA
- TICK

5-3

E&V Guidebook, Version 3.0

[@DoD 1983: 13.7.3] For a pre-defined floating point type F, the value of:
- F'MACHINEROUNDS
- F'MACHINE RADIX
- F'MACHINE MANTISSA
- F'MACHINE EMAX
- F'MACHINEEMIN
- F'MACHINEOVERFLOWS

* [@DoD 1983: 13.7.3] The values outside the range of safe numbers for real
types

* [@DoD 1983: 13.10.1] Any restriction on UN-
CHECKEDDEALLOCATION

• [@DoD 1983: 13.10.2, F.] Any restriction on UN-
C-ECKEDCONVERSION

[@DoD 1983: Input-Output 14]
* [@DoD 1983: 14., F.] Any implementation-dependent characteristics of the

input-output packages
* [@DoD 1983: Implementation-Dependent Features F.]

- [@DoD 1983: F.] The name and type of every implementation-dependent
attribute

Outputs: A completed list which characterizes the tool relative to machine dependencies.

5-4

E&V Guidebook, Version 3.0

5.3 RADC SOFTWARE QUALITY METRIC WORKSHEETS

Purpose: "The purpose of this guidebook is to provide a comprehensive set of procedures and
techniques to enable data collection personnel to apply quality metrics to software products
and to evaluate the achieved quality levels." The focus of the RADC report is planning
and designing quality into application software throughout the software life cycle.
However, many of the questions on the worksheets are equally relevant to systems and
support software and may be rephrased to address software that is already in use as
opposed to software under development.

[@RM: Quality Assessment 7.2.2.8, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Application Independence 6.4.3,
@RM: Augmentability 6.4.4,
@RM: Autonomy 6.4.5,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10
@RM: Distributedr s 6.4.12
@RM: Documentation Quality 6.4.13,
@RM: Functional Overlap 6.4.14,
@RM: Functional Scope 6.4.15,
@RM: Generality 6.4.16,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Reconfigurabilitv 6.4.25,
@RM: Rehostability 6.4.26,
@RM: Retargetabilitv 6.4.28,
@RM: Self-Descriptiveness 6.4.29.
@RM: Simplicity 6.4.30,
@RM: Storage Effectiveness 6.4.32,
@RM: System Accessibility 6.4.33,
@RM: System Clarity 6.4.34.
@RM: System Compatibility 6.4.35,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37.
@RM: Virtuality 6.4.39,
@RM: Visibility 6.4.40);

5-5

E&V Guidebook, Version 3.0

@RM: Quality Measurement 7.3.1.9, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Application Independence 6.4.3,
@RM: Augmentability 6.4.4,
@RM: Autonomy 6.4.5,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10,
@RM: Distributedness 6.4.12,
@RM: Documentation Quality 6.4.13,
@RM: Functional Overlap 6.4.14,
@RM: Functional Scope 6.4.15,
@RM: Generality 6.4.16,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Reconfigurability 6.4.25,
@RM: Rehostability 6.4.26,
@RM: Retargetability 6.4.28,
@RM: Self-Descriptiveness 6.4.29,
@RM: Simplicity 6.4.30,
@RM: Storage Effectiveness 6.4.32,
@RM: System Accessibility 6.4.33,
@RM: System Clarity 6.4.34,
@RM: System Compatibility 6.4.35,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Virtuality 6.4.39,
@RM: Visibility 6.4.40)1

Primary References: [Bowen 1985] T.P. Bowen, G.B. Wigle, and J.T. Tsai, "Specification of
Software Quality Attributes Software Quality Evaluation Guidebook," Rome Air
Development Center, Griffiss AFB, RADC-TR-85-37, Volume III (of three), February
1985, Appendix A, DTIC Number AD A153 990.

Vendors/Agents: [RADC, Boeing Aerospace]

Method: Questionnaire/Worksheet.
Inputs: Worksheet, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed worksheet.

5-6

E&V Guidebook, Version 3.0

5.4 SEI ASSESSMENT OF SOFTWARE ENGINEERING TOOLS

Purpose: The guide provides and discusses a set of standard questions that a potential user may
ask about a tool, given that different users will interpret the answers in different ways and
attach different degrees of importance to them. The questions are grouped according to
the following aspects: 1) Ease of use, 2) Power, 3) Robustness, 4) Functionality, 5) Ease
of insertion, and 6) Quality of commercial support. The first four sections are mainly of
concern to the actual user of the tool; the last two are of concern to the management of
the project that contemplates acquiring the tool.

[@RM: Anomaly Management 6.4.2;
@RM: Augmentability 6.4.4;
@RM: Capacity 6.4.6;
@RM: Commonality 6.4.7;
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10;
@RM: Functional Overlap 6.4.14;
@RM: Granularity 6.4.17;
@RM: Maturity 6.4.19:
@RM: Operability 6.4.21;
@RM: Power 6.4.22;
@RM: Processing Effectiveness 6.4.23;
@RM: Proprietary Rights 6.4.24;
@RM: Rehostability 6.4.26;
@RM: Simplicity 6.4.30;
@RM: Storage Effectiveness 6.4.32;
@RM: System Accessibility 6.4.33;
@RM: System Compatibility 6.4.35:
@RM: Traceability 6.4.36;
@RM: Training 6.4.37;
@RM: Vendor Support 6.4.38;
@RM: Visibility 6.4.401

Primary References: [Firth 1987] R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, "A
Guide to the Classification and Assessment of Software Engineering Tools," Software
Engineering Institute, Technical Report, CMU/SEI-87-TR-10, August 1987, DTIC Number
AD A182 895.

Vendors/Agents: [SEI]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

5-7

E&V Guidebook, Version 3.0

5.5 VENDOR EVALUATION QUESTIONNAIRE

Purpose: The purpose of this questionnaire is to provide an overview of the characteristics and
policies of a vendor. The questionnaire appears in full in Section 4.8 of the reference cited
below. In its current form it applies specifically to Ada compilation system vendors, but
most of the questions apply equally well to tool vendors in general. Figure 5.5-1 simply
lists the titles of the II subdivisions of the questionnaire. The questionnaire itself provides
2 to 15 questions under these titles.

f@RM: Ccst 6.4.11;
@RM: Documentation Quality 6.4.13;
@RM: Maturity 6.4.19;
@RM: Proprietary Rights 6.4.24;
@RM: Training 6.4.37;
@RM: Vendor Support 6.4.381

Primary References: [Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler
Evaluation and Selection, Version 1.0," Software Engineering Institute, CMU/SEI-89-TR-
13, March 1989, DTIC Number AD A207 717.

[Weiderman: Compiler Evaluation and Selection 4.181

Vendors/Agents: [SEI]

Method: Questionnaire.
Inputs: Blank characterization form and tool documentation.
Process: Gather data and fill in form.
Outputs: Completed vendor characterization form.

Corporate structure
Corporate performance
Product lines
Corporate health
Tailoring policies
Support policies
Pricing policies
Runtime policies
Runtime royalties
Source code
Contractual issues
References

Figure 5.5-1 Vendor Characterization Form Categories

5-8

E&V Guidebook, Version 3.0

5.6 REQUIRED CONFIGURATION QUESTIONNAIRE

Purpose: Assess the required configuration for using a software product. The questionnaire
covers the recommended as well as the required configuration since using a product with
the minimum required configuration may result in performance which is unacceptable to
a user.

[@RM: Rehostability 6.4.26;
@RM: Required Configuration 6.4.27;
@RM: System Compatibility 6.4.351

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 5.6-1) and the product documentation.
Process: Answer questions based on the documentation or by asking the product vendor.
Outputs: Completed questionnaire which describes the resources required to run the

product.

5-9

E&V Guidebook, Version 3.0

Host System
What host computer(s) or chip(s) does the product run on?

What operating system(s) (including version and release) does the product run on?

- What is the minimum and recommended configuration of the operating system
(parameter settings)?

Main Memory
What is the minimum required RAM (both physical, including expanded or extend-
ed, and virtual memory) to run the product?

- What is the recommended RAM to run the product?

- If expanded or extended memory is used, what type(s)?

How do the RAM requirements change with the size of the input data file(s)?

Secondary Memory

How much space do the executable(s), object file(s), and runtime system take?

How much space do typical input data file(s) take?

- How does the space vary with the size of the input data file(s)?

How much space do typical output data file(s) take?

- How does the space vary with the size of the output data file(s)?

Peripherals (Disk, Monitor, Printers, Plotters, Mouse, etc.)
What are the required peripherals?

What are the recommended peripherals?

Other Software (APSE, CAIS, Runtime, DBMS, Window Manager, etc.)
What are the other required software products?

What are the other recommended software products?

Figure 5.6-1 Required Configuration Questionnaire

5-10

E&V Guidebook, Version 3.0

5.7 COST QUESTIONNAIRE

Purpose: Assess the costs of acquiring, running, and supporting a software product.

[@aRM: Cost 6.4.11;

@RM: Training 6.4.37;
@RM: Vendor Support 6.4.38]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire
Inputs: Questionnaire (see Fig. 5.7-1) and the product pricing information.
Process: Answer questions based on the pricing information or by asking the product

vendor.
Outputs: Completed questionnaire which describes the costs of acquiring, running, and

supporting the product.

5-11

E&V Guidebook, Version 3.0

Product
What is the single copy price?
Are there discounts for volume purchases?
- Does the entire quantity have to be purchased all at once or does the vendor track purchases by organization and automati-

cally apply the discount when the required volume has been reached?
What is the price of a site license?
What is the cost of leasing the product?
- Is the lease perpetual or fixed term?
- If fixed term, what are the renewal terms?
How does the cost depend on characteristics of the host machine?
- What are the costs to add more users or workstations?
- What are the costs to move to a different host machine?
Are there discounts for government organizations?
Are there discounts for academic institutions?
Can the product be returned during some specified period for a full refund?
If available, what is the cost of purchasing the source code?

Maintenance
What is the one year maintenance cost?
- What does it provide in terms of:

- Support?
- Bug Fixes?
- Upgrades?
- Documentation Updates?

What happens in the event maintcaance has been dropped?

What is the cost of hot line support?
- Is there an 800 number?
If there is an electronic bulletin board for problem reports and resolutions, what is the subscription fee?
What are the costs of making application-specific changes?

Training
What is the cost of:
- On-site training?

Seminars?
Video training courses?
Computer based training?
Users* group membership?
Newsletter subscription?
In-house consultants?

Are there training credits offered with the purchase of the product?
- How much are they worth?
- What can they be used for?
- How long are they good for?

Documentation
What is the price of:
- Tnstallation guide?

- Users' guide?
- Reference manual?
- Interface manual?
- Quick reference card?
- Keyboard template?

MNIsellaneous
If the product requires the purchase of other hardware or software, what does that cost?

What is the cost of installing the product?
What is the cost of running the product?
- Cost per run or session?
- Runs or sessions per day, week. month, or year?
What is the cost of supporting the product?
- Cost of computer resources?
- Cost of operations or support personnel?

Figure 5.7-1 Cost Questionnaire

5-12

E&V Guidebook, Version 3.0

5.8 MATURITY QUESTIONNAIRE

Purpose: Assess the maturity of a software product.

[@RM: Maturity 6.4.19;

@RM: Vendor Support 6.4.381

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 5.8-1) and the product historical information.
Process: Answer questions based on the historical information or by asking the product

vendor.
Outputs: Completed questionnaire which describes the maturity of the product.

Product History
When was the product first released?
What is the current version and release?
What is the frequency of new versions and releases?
What are the procedures for testing new versions and releases?
- Alpha testing?

- Beta testing?

User Community
How many active users of the product?
- Will the vendor supply references?
- What applications has the product been used on?

Is the vendor willing to share problem reports and resolutions with the users?
Is there a users' group?
- How often do they meet?

Product Evaluation
How has the product been rated in the literature?

Are there independent evaluations of the product available?

Figure 5.8-1 Maturity Questionnaire

5-13

E&V Guidebook, Version 3.0

5.9 LICENSING ISSUES QUESTIONNAIRE

Purpose: Assess the licensing agreement for a software product.

[@RM: Proprietary Rights 6.4.24;

@RM: Vendor Support 6.4.381

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire
Inputs: Questionnaire (see Fig. 5.9-1) and the product licensing agreement.
Process: Answer questions based on the licensing agreement or by asking the product

supplier.
Outputs: Completed questionnaire which describes the licensing agreement for a product.

What, specifically, is being purchased, leased, or otherwise acquired?
- Hardware?

- Software?

- Utilities?

- Documentation?

- If lease, is it perpetual or fixed term?
- If fixed term, what are the renewal terms?

Is any part of the product "free" or shareware?
- What are the restrictions and/or obligations in using the product?

What, specifically, is covered by patents, copyrights, trademarks, or agreements?

- Is any of the product copy protected?
- Can the user make backup copies for protection?
- Can the documentation be copied?

Are there limitations on the number of users or workstations using the product?

Can the product be moved to a different machine or does it have to stay on a specific
machine?

Figure 5.9-1 Licensing Issues Questionnaire

5-14

E&V Guidebook, Version 3.0

Is the source code available?
- If so, what are the licensing terms?
- If not, can it be put into escrow to protect the user in the event that the supplier
goes out of business?
- Who holds the rights to the user-modified source code?

- What is the effect on the maintenance agreement?

What is the supplier's obligation to correct deficiencies?

What is the supplier's obligation to maintain upward compatibility across new versions or
releases?

What is the supplier's obligation to provide interface information to the user?

- What is the supplier's obligation to maintain fixed syntax and semantics of the
product's interfaces?

What are the supplier's rights to:

- Runtime versions of the product (no development tools)?

- Objects generated by the product?

- What are the procedures to account for and collect the royalties?

What are the user's rights to the executables and/or source code in the event that:
- The supplier goes out of business?

- The supplier is bought out by another company?

- The supplier discontinues the product?

- The supplier issues a new version or release?

What obligations of the supplier to third parties are inherited by the user?

What exceptional conditions and penalty clauses are in the agreement?

Figure 5.9-1 Licensing Issues Questionnaire (Continued)

5-15

E&V Guidebook, Version 3.0

5.10 SOFTWARE PRODUCTION VEHICLE(S) QUESTIONNAIRE

Purpose: Assess the software production vehicle(s) of a software product.

[@RM: Software Production Vehicle(s) 6.4.311

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 5.10-1) and the product specification data.
Process: Answer questions based on the specifications or by asking the product vendor.
Outputs: Completed questionnaire which describes the software production vehicle(s) of

a product.

5-16

E&V Guidebook, Version 3)

Requirements/Design
What front end methodologies are used to develop the product?

What front end software tools are used to develop the product?

Coding
What source languages are used to implement the product?

- Are the versions based on standards?
Is the source code automatically generated from the front end tools?
- What code generator(s) are used?

What compiler (assembler, interpreter) version is used?
- What parameters are set during compilation?

What is the host computer and operating system (including models and versions)?
- Is the development platform the same as the product host?

- If not, what is the development computer and operating system?
What linker version is used?
- What parameters are set during linking?

Testing and Evaluation
What testing techniques are used?
- Static analysis?

- Dynamic analysis:
- Structural coverage?
- Domain/Path coverage?
- Symbolic testing?

- Mutation analysis?
- Functional testing?
- Random testing?

What release testing procedures are used?
- Alpha testing?

- Beta testing?

What testing tools are used?

User Feedback
What mechanisms are there for collecting user feedback?

What mechanisms are there for evaluating user feedback?

What mechanisms are there for responding to user feedback?

Configuration Management
What procedures are there for managing the configuration of the product?

What tools are there for managing the configuration of the product?

Figure 5.10-1 Software Production Vehicle(s) Questionnaire

5-17

E&V Guidebook, Version 3.0

5.11 CHARACTERISTICS OF INTEGRABLE SOFTWARE TOOLS

Purpose: Assessment of the characteristics of software tools that allow them to be easily
integrated into a software development environment (SDE). "Since we cannot fully
enumerate all of the SDEs in which a tool will eventually be included (such a list is
continually changing), a very important issue is the characteristics a tool should have such
that it will be easy to add it to integrated environments at any time."

[@RM: Augmentability 6.4.4;
@RM: Commonality 6.4.7;
@RM: Communication Effectiveness 6.4.8;
@RM: Consistency 6.4.10;
@RM: Granularity 6.4.17;
@RM: Integration 6.4.18;
@RM: Operability 6.4.21;
@RM: Proprietary Rights 6.4.24;
@RM: Rehostability 6.4.26;
@RM: Software Production Vehicle(s) 6.4.31;
@RM: System Compatibility 6.4.35;
@RM: Virtuality 6.4.391

Primary References: [Nejmeh 1989] B.A. Nejmeh, "Characteristics of Integrable Software
Tools," Software Productivity Consortium, INTEGS/WTOOLS-89036-N, Version 1.0, 23
May 1989.

Vendors/Agents: [SPC, INSTEP]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 5.11-1) and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

5-18

E&V Guidebook, Version 3.0

location Independence
Can the location of data a tool produces be readily changed by a system administrator without affecting the tool?
Can the location of the binaries of the tool be readily changed by a system administrator without affecting the tool?

Non-Assuming
Does the tool make unnecessary assumptions about the network? For example:

A copy of its binaries will reside on each node
Where printers are plugged in
What kinds of backup devices are available
What and where system processes are running

Non-Interfering
Is the environment free from any side effects of the tool, such as stolen CPU cycles or locked resources?

Tool Fragment Invocation
Is it possible to invoke every tool fragment (component) outside the native user interface of the tool?
If so, how:

Command line?
Function library?

Data Import
Does the tool support a data import capability (can it read and process data produced by a foreign tool)?
If so, how:

Published type definitions and formats?
Access programs?

Data Export
Does the tool support a data export capability (can it produce data that can be read and processed by a foreign tool)?
If so, how:

Published type definitions and formats?
Access programs?

Object Schema Extension
Is it possible for a user to define additional properties for an object and set/get the value(s) of the properties?
Can the tool display the values of such properties?

Contextual Information Exportation
Is it possible, from within the tool, to export information (data) about selected objects?

Operation Extension
Is it possible, once the context within a tool is established, for a user-supplied operation (program) to be executed on the
established contextual data?

X Window System
Does the tool use the X Window System for its user interface?

Message Modification
Is it possible to modify the messages that the tool produces:

Error messages?
On-line help?

Hardware Transparency
Are all machine versions currently running the same release version?
Does the tool operate the same on different hardware platforms?

Are the differences documented?
Does the tool operate the same as other tools on the same hardware platform?

Reasonable Licensing Scheme
Does the tool conform to a standard licensing scheme (such as the Network Computing Forum scheme)?
If so. how:.

Floating keys?
Pay per usage?

Figure 5.11-1 Characteristics of Integrable Tools Questionnaire

5-19

E&V Guidebook, Version 3.0

5.12 SERC: A FRAMEWORK FOR ANALYZING USER INTERFACES

Purpose: "A framework is presented for analyzing the capabilities of user interfaces. The
different features that describe the design space of user interfaces are discussed along with
the consequences of supporting them. The framework is used to analyze current
interaction styles based on forms, teletype input/output, text editing, graphical display, and
structure editing."

[@RM: Anomaly Management 6.4.2;
@RM: Consistency 6.4.10;
@RM: Distributedness 6.4.12;
@RM: Operability 6.4.21;
@RM: Power 6.4.22;

@RM: Processing Effectiveness 6.4.23]

Primary References: [Dewan 1988] P. Dewan, "A Framework for Analyzing User Interfaces,"
Software Engineering Research Center, Purdue University, SERC-TR-1 1-P, 24 May 1988.

Vendors/Agents: [SERC]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 5.12-1), tool, and tool documentation.
Process: Answer the questions based on running the tool, reading the tool documentation,

or asking the tool vendor.
Outputs: Completed questionnaire.

Aulomatlic/Manual Updates
Does the tool/APSE automatically update the display to show new values of objects or does the tool require the user to request
the update via commands or both? (Manual updates may be desired if the tool manipulates a large number of objects which
cannot all be shown on a single display.)

Is the mode of update appropriate to the type of interaction?
If both modes of update are supported, is the mode user-selectable or does the tool select the mode based on 'he
specific interaction?

In-Place/Script Updates
Does the tool/APSE update the display in-place or does the tool update the display via a script or both? (Tn-place updates
reduces display clutter by not showing redundant or possibly unimportant old information, while script updates show the history
of the interaction.)

Is the type of update appropriate to the type of interaction?
If both types of update are supported, is the type user-selectable or does the tool select the type based on the specific
interaction?

Graphical/Textual Presentations
Does the tool/APSE provide purely textual, purely graphical, or combined graph!wa:-textual representation of objects?

Is the type of presentation appropriate to the type of interaction?
If both types of presentation are supported, is the type user-selectable or does the tool select the type based on the
specific interaction?

Viewing Information at Various Levels of Detail
Does the tool/APSE allow the user to view objects at various levels of detail via compress and expand commands?

If so, does the tool replace one view with the othe, show both views simultaneously, or both?
Is the technique appropriate to the type of interaction?
If both techniques are supported, is the type user-selectable or does the tool select the type baed on the specific
interaction?

Figure 5.12-1 Analyzing User Interfaces Questionnaire

5-20

E&V Guidebook, Version 3.0

Selection/Naming of Objects and Operations
How does the user specify the object(s) to be manipulated and the operation(s) to be performed by the tool/APSE; by naming
them, by selecting them from a list, or both? (Selection saves the user from the task of knowing and entering the names of
objects and operations, but may require the user to change views. Selection is preferable when several selections can be made
before changing views.)

Is the specification approach appropriate to the type of interaction?
If both specification approaches are supported, is the type user-selectable or does the tool select the type based on the
specific interaction?
If the named specification approach is supported, does the tool support abbreviated forms?

If yes, are the abbreviated forms fixed or arbitrary?

Uniform/Non.Uniform Invocation of Operations
Does the tool/APSE support a strictly uniform operation invocation scheme (i.e.. prefix, infix, or postfix notation), a non-
uniform scheme, or a flexible scheme? (Uniform operation invocation schemes are generally easier to learn, but may be too
rigid or non-intuitive in certain contexts.)

Is the scheme appropriate to the type of interaction?
If a flexible scheme is supported, is the scheme user-selectable or does the tool select the scheme based on the specific
interaction?

lniform/Non.Uniform Naming of Operations
Does the tool/APSE provide uniform naming of operations for similar (identical) operations performed on different types of
objects?

Automatic/Manual Propetatlon of Changes
Does the tool/APSE automatically propagate changes to related objects or does the tool require the user to propagate the
changes manually or both? (Automatic propagation is more powerful since the data is consistently maintained, but it may be
expensive to recover from an erroneous transaction.)

Is the mode, f propagation appropriate to the type of interaction?
If both modes of propagation are supported, is the mode user-selectable or does the tool select the mode based on the
specific interction?

Direct Manipulation
Does the tool/AP 11 support the modification of objects by direct manipulation, i.e.. by editing its presentation rather than
forcing the user to i'voke a series of commands? (Direct Manipulation prevents errors and saves the user from having to
confirm changes.)

If so, does ",e tool do so for all objects or only some?

I'%er-Driven/Program-D-iven Execution of Operations
Does the tool/APSE support program-driven or user-driven execution of operations or both? (User-driven execution allows the
user to enter valu- in the order derived, but requires the values be specified, either by naming or by selection. Program-driven
execution is best %, ien the order is standard.)

Is the type ws execution appropriate to the type of interaction?
If both type- of execution are supported, is the type user-selectable or does the tool select the type based on the specific
interaction:

Dynamic/Static Windows
Does the tool/APS allow presentations to e created. deleted, moved, or changed dynamically? (Dynamic windows are
needed to display -I rying lists, objects of varying structure, recursive structures, script updates, and in-place expand and
compress.)

Incremental/Batch Feedbick
Does the tool/APSE report syntactic and semantic errors when they are made or in a batch at some later time or both?
(Incremental feedback catches errors early, but may cause spurious error messages in the middle of a transaction. Batch
feedback reduces the number of passes required of the tool before the operation can be successfully completed.)

Is the type of feedback appropriate to the type of interaction?
If both types of feedback are supported, is the type user-selectable or does the tool select the type based on the specific
interaction?

Correcting Errors
Does the tool/APSE allow the user to undo any semantic actions caused by the entry of erroneous data?
Does the tool/APSE allow the user to correct syntactic, semantic, and user errors?
Does the tool/APSE allow for incremental error correction, i.e., correction should not require the reentry of correct data?
Does the tool/APSE allow syntactic and semantic errors to be corrected at any time. and user errors to be corrected until there
has occurred some irreversible semantic action?

User Interface Paraditm
What is the user interface paradigm: form filling, text editing. teletype input/output. structure editing, or graphical display?

Figure 5.12-1 Analyzing User Interfaces Questionnaire (Continued)

5-21

E&V Guidebook, Version 3.0

5.13 ZEUS

Purpose: The hardware independence checkout software, Zeus, is a tool designed to parse C
source, extract function calls, and through an expert systems rule base, compare those calls
against standards (POSIX, System V Interface Definition, X-Open) and rules representing
project restrictions, to enforce modularity and identify hardware dependent functions. Note
that use of this tool requires access to the C language source code.

(@RM: Consistency 6.4.10,
@RM: Modularity 6.4.20;,
@RM: Rchostability 6.4.26;
@RM: Software Production Vehicle(s) 6.4.31;
@RM: System Compatibility 6.4.351

Primary References:

Host/OS: Unix

Vendors/Agents: [ACSI]

Method: Source code analysis and modification.
Inputs: Zeus, C source code for tool, and local compliance standards.
Process: 1. Obtain the Zeus tool.

2. Parse the C source code for the tool of interest.
3. Collect and analyze the results.
4. Optional - compile and link the modified source code.

Outputs: Problem report and modified source code.

5-22

E&V Guidebook, Version 3.0

6. COMPILATION SYSTEM ASSESSORS

For the purposes of this document, the compilation system is defined as those APSE

components which are Ada-specific and are required for validation: the compiler, the code

generator, the program library management system, and the runtime support system. While

each of these components have characteristics which should be assessed individually, the

assessment of their combined functionality will be more critical to the successful development

of mission critical software.

The criticality of assessor development for these four compilation system components is

made evident by the many large-scale projects with requirements for the use of Ada. These

large-scale projects include the Strategic Defense Initiative (SDI), the NASA Space Station, the

Software Technology for Adaptable, Reliable Systems (STARS) program, Army Tactical

Command and Control System, Army WWMCCS Information System (WIS), and the Advanced

Tactical Fighter (ATF), A-12, and Light Helicopter Experimental (LHX) programs being

evaluated for common avionics systems under the auspices of the Joint Integrated Avionics

Working Group (JIAWG). The successful performance of these systems depends upon the

quality/extent of code generation support and execution support found in the compilation

system.

6-1

E&V Guidebook, Version 3.0

6.1 Ada COMPILER VALIDATION CAPABILITY (ACVC)

Purpose: Validation of the completeness of the Ada compiler by means of a compiler test suite.
The ACVC consists of a test suite, analysis tools, and accompanying documentation, to
enable the determination of conformance of Ada compiler implementations to the
ANSI/MIL-STD-1815A. Note: The AJPO requires that Ada compilers pass the ACVC
and the vendor allow the distribution of the resulting Validation Summary Report (VSR)
in order for the compiler to be advertised as a commercially available Ada compiler.

((@RM: Compilation 7.1.6.7,
@RM: Program Library Management 7.2.1.7), @RM: Completenes 6.4.91

Primary References: [ACVC 1989] Ada Compiler Validation Procedures, Version 2.0, AJPO,
May 1989.

Vendors/Agents: [AVFJ

Method: Automated test suite.
Inputs: ACVC source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain latest ACVC test suite
2. Following documentation, compile and run tests
3. Use analysis tools on test outputs.

Outputs: Validation results; Validation Summary Report (VSR).

6-2

E&V Guidebook, Version 3.0

6.2 IDA BENCHMARKS

Purpose: Evaluation of the capacity and performance of the Ada compiler by means of a
compiler test suite.

[@RM: Compilation 7.1.6.7. (@RM: Capacity 6.4.6.
@RM: Processing Effectiveness 6.4.23,
@RM: Storage Effectiveness 6.4.32);

@RM: Runtime Environment 7.2.3.5, @RM: Processing Effectiveness 6.4.23]

Primary References: [Hook 1985] A.A. Hook, G.A. Riccardi, M. Vilot, and S. Welke, "User's
Manual for the Prototype Ada Compiler Evaluation Capability (ACEC)," Version 1,
Institute for Defense Analysis, IDA Paper P-1879, October 1985, DTIC Number AD A163
272.

Host/OS: VAX/VMS or any system that can read ANSI standard tapes.

Vendors/Agents: [SofTech OH]

Method: Test suite.
Inputs: IDA source code, Ada compiler and runtime system, and host (and target)

computers.
Process:

1. Obtain test suite from agent
2. Compile and run Ada programs.

Outputs: Timing and storage measurements for individual language features.

6-3

E&V Guidebook, Version 3.0

6.3 Ada COMPILER EVALUATION CAPABILITY (ACEC)

Purpose: The Ada Compiler Evaluation Capability (ACEC) Version 2.0 was developed by
Boeing Military Airplanes for the Ada Joint Program Office (AJPO) under the direction
of the Air Force Wright Research and Development Center (WRDC). Its primary purpose
is to provide the capability to determine the performance and usability characteristics of
Ada compilation systems. The ACEC consists of the ACEC Software Product and three
supporting documents: the ACEC User's Guide, the ACEC Reader's Guide, and the
ACEC Version Description Document.

ACEC Software Product - The ACEC Software Product consists of performance tests,
assessor tools, and support software. The software product makes it possible to:

* Compare the performance of several implementations

* Isolate the strong and weak points of a specific system, relative to other systems which
have been tested

• Determine what significant changes were made between releases of a compilation
system

* Predict performance of alternative coding styles

* Evaluate the clarity and accuracy of a system's diagnostic messages

• Determine whether the functional capabilities of a program library system are
sufficient to accomplish a set of predefined scenarios

• Determine whether the functional capabilities of a symbolic debugger are sufficient to
accomplish a set of predefined scenarios (see [7.11]).

The main emphasis of the ACEC is measuring execution time efficiency, but it also
addresses code size efficiency and compile time efficiency. The test suite includes:

* Language feature tests

* Composite benchmarks

* Optimization tests

• Sorting programs

• Example avionics application.

The assessor tools provide assistance in evaluating symbolic debuggers, program library
systems, and c'-rmpiler diagnostics. The test suite does not include explicit tests for

6-4

E&V Guidebook, Version 3.0

existence of language features.

The support software is a set of tools and procedures which assist in preparing and
executing *he test suite, in extracting data from the results of executing the test suite, and
in analyzing the performance measurements obtained. The support tools consist of:

" INCLUDE - assists in adapting programs to particular targets by performing source
text inclusion

* FORMAT and MELDATACONSTRUCTOR - extract and format timing and code
expansion data

* MEDIAN - compares results of performance tests of various systems

* SINGLE SYSTEM ANALYSIS - compares results of related tests from a single system

The ACEC Software Product is developed for a variety of targets and is distributed on one
9-track, 1600 bpi, VAX/VMS backup tape.

ACEC User's Guide - The ACEC User's Guide provides ACEC users with the information
necessary to adapt and execute the ACEC Software Product. This guide explains how to
use the support tools and how to deal with the problems which may occur in the process
of adapting and executing the ACEC Software Product.

ACEC Reader's Guide - The ACEC Reader's Guide describes how users can interpret the
results of executing the performance tests and assessor tools. This guide also covers the
statistical significance of the numbers produced, the organization of the test suite, and the
submission of error reports and change requests.

ACEC Version Description Document - The Version Description Document describes the
ACEC Software Product as contained on the distribution tape. The document describes
the compilation units, programs, test problems, and sample data contained on the distribu-
tion tape. This document contains a set of indexes which allow the user to identify each
test, its primary purpose, its secondary and incidental purposes, related and comparison test
problems, and applicable LRM section.

Document Distribution - The ACEC User's Guide, ACEC Reader's Guide, and the ACEC
Version Description Document are available indi,0duilly in hard copy form or as a package
distributed on one 9-track, 1600 bpi, VAX/VMS backup tape. NOTE: The package is
distributed as an ASCII text file embedded with LaTeX formatting commands.

ACEC Version 2.0 was released in May of 1990. ACEC Version 2.1, a maintenance
release, is scheduled for March 1991.

6-5

E&V Guidebook, Version 3.0

[0 RM: Compilaion 7.1.6.7, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Storage Effectiveness 6.4.32);

(a RM: Program Library Management 7.2.1.7, (@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Storage Effectiveness 6.4.32);

ti RM: Runtime Environment 7.2.3.5, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Processing Effectiveness 6.4.23))

Primary References: [ACEC 19901 "Ada Compiler Evaluation Capability (ACEC) Technical
Operating Report (TOR) Reader's Guide," Air Force Wright Research and Development
Center, D500-12471-1, May 1990.

[ACEC 1990a] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User's Guide," Air Force Wright Research and Development Center, D500-12470-
1, May 1990.

[ACEC 1990b] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) Version Description Document," Air Force Wright Research and Development
Center, D500-12472-1, May 1990.

Vendors/Agents: [DACS]

Method: Automated test suite and questionnaires.
Inputs: ACEC source code, Ada compilation system and symbolic debugger, host and

target computer.
Process:

1. Obtain the ACEC.
2. Compile and run the tests according to the documentation.
3. Answer the questions by running the tools, reading the documentation, or asking the

vendor.
4. Use the analysis tools on the test outputs.

Outputs: Reports and/or completed questionnaires containing the assessment of the tools
for the selected tests. Raw data from individual tests can be aggregated together with
MEDIAN to allow for gross comparisons among different compilers.

6-6

E&V Guidebook, Version 3.0

6.4 PIWG BENCHMARK TESTS

Purpose: Identification of performance characteristics of Ada compilers. A set of tests have
been collected by the Performance Issues Working Group (PIWG) a volunteer subgroup
of the Special Interest Group for Ada (SIGAda) of the Association for Computing
Machinery (ACM). They have been in the public domain since 1986 and are updated
periodically.

Section 7.2 of the cited reference contains a description of the PIWG test suite structure.
It says that "... the current PIWG suite only addresses the time domain, that is, only
run-time and compile-time measurements are made (CPU time as well as elapsed time).
Of these, only the run-time tests are considered mature and truly useful at this time." The
following tests or test groups are included:

* Clock resolution

" Dynamic storage allocation

* Language feature tests
C Tests -- task creation and termination overhead
D Tests -- dynamic elaboration overhead
E Tests -- exception related timing
F Tests -- Boolean flag overhead and coding style impact
G Tests -- Text 10 related timing
H Tests -- LRM Chapter 13 features
L Tests -- loop overhead
P Tests -- procedure call related timing
T Tests -- task related timing
Y Tests -- delay related.

" Runtime checks overhead

* Compilation speed and capacity tests

• Composite benchmarks (Hennessy, Whetstone, and Dhrystone)

* Application (Path tracking program with a Kalman filter)

[(dRM: Compilation 7.1.6.7. (@RM: Capacity 6.4.6,
@RM: Processing Effectiveness 6.4.23):

(ORM: Runtime Environment 7.2.3.5. @RM: Processing Effectiveness 6.4.231

6-7

E&V Guidebook, Version 3.0

Primary References: [PIWG 19901 "Ada Performance Issues," Ada Letters, Special Edition
from SIGAda, the ACM Special Interest Group on Ada Performance Issues Working
Group, Vol. X, Number 3, Winter 1990.

[Ada Performance Issues (PIWG Special Edition) 4.19]

Vendors/Agents: [PIWG]

Method: Automated test suite.
Inputs: PIWG source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain the latest PIWG tests (from PIWG Bulletin Board).
2. Compile and run tests according to the documentation.

Outputs: Reports on the compile and execution time of each test run.

6-8

i n mm mm| i | U M in - mo

E&V Guidebook, Version 3.0

6.5 UNIVERSITY OF MICHIGAN BENCHMARK TESTS

Purpose: Identification of the execution efficiency of the code generated by Ada compilers.
The tests measure only the performance of isolated language features as they relate to real-
time performance. This suite of tests was among the first to put Ada benchmarking on a
sound scientific and theoretical basis. The suite forms the basis of much of the PIWG suite
(see [6.41), but does contain some tests not included in the PIWG suite, such as tests for
the presence of garbage collection and manipulation of variables of type time and duration.

[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.231

Primary References: [Clapp 1986a] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and
T. Schultze, "Toward Real-Time Performance Benchmarks for Ada," Communications of
the ACM, Volume 29, Number 8, August 1986, pp. 760-778.

[Clapp 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze,
"Toward Real-Time Performance Benchmarks for Ada," Robotics Research Laboratory,
Dept. of Electrical Engineering and Computer Science, The Univ. of Michigan, RSD-TR-
12-86, July 1986.

Vendors/Agents: [UMich]

Method: Test suite.
Inputs: UMichigan source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain the UMichigan tests
2. Compile and run according to the documentation.

Outputs: Reports on the execution time of each test run.

6-9

E&V Guidebook, Version 3.0

6.6 MITRE BENCHMARK GENERATOR TOOL (BGT)

Purpose: Evaluation of the ability of an Ada compilation system to support development of
very large systems in Ada. Under sponsorship of the Federal Aviation Administration,
MITRE developed the Benchmark Generator Tool (BCT). The bLnchmark tests address
capacity issues arising with large system developments. The initial version (1988) includes
two types of tests: Library Capacity Tests and Dependency Maintenance Tests.

[@RM: Compilation 7.1.6.7, @RM: Capacity 6.4.6;
@RM: Program Library Management 7.2.1.7, (@RM: Anomaly Management 6.4.2,

@RM: Capacity 6.4.6.
@RM: Storage Effectiveness 6.4.32)]

Primary References: [Rainer 1986] S.R. Rainer, and T.P. Reagan, "User's Manual for the Ada
Compilation Benchmark Generator Tool," MITRE Corporation, MTR-87W00192-01,
January 1988.

Host/OS: Any for which an Ada compiler exists.

Vendors/Agents: [MITRE VA]

Method: Automated tool.
Inputs: BGT source code, Ada compiler, and host computer.
Process:

1. Obtain the BGT
2. Compile according to the documentation.

Outputs: Results of the above analysis, including capacity limits, link time, compilation
time, etc.

6-10

E&V Guidebook, Version 3.0

6.7 UK Ada EVALUATION SYSTEM (AES)

Purpose: Evaluation of Ada compilers and associated linkers/loaders, program library systems,
debuggers, and run-time libraries. A test suite and a methodology (AES) were developed
by Software Sciences Ltd., under sponsorship of the UK Ministry of Defense (MoD). The
British Standards Institute (BSI) has been sponsored by the MoD to provide an Ada
Evaluation Service, using the AES. Interested parties, such as compiler vendors or
potential compiler purchasers, may pay BSI to conduct an evaluation or to supply a copy
of an existing evaluation report.

[@RM: Compilation 7.1.6.7, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Cost 6.4.11,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32);

@RM: e'rogram Library Management 7.2.1.7, (@RM: Capacity 6.4.6,
@RM: Processing Effectiveness 6.4.23);

@RM: Runtime Environment 7.2.3.5, @RM: Processing Effectiveness 6.4.231

Primary References: [Pierce 1986] R.H. Pierce, I. Marshall, and S.D. Blude, "An Introduction
to the MoD Ada Evaluation System," Software Sciences Ltd., Report Number 5485, June
1986.

Host/OS: Any for which an Ada compiler exists.

Vendors/Agents: [BSI]

Method: Automated test suite and questionnaire.
Inputs: AES source code and questionnaire, Ada compiler and runtime system, and host

(and target) computer.
Process: Pay BSI to do an evaluation or purchase an existing evaluation report.
Outputs: An Evaluation Report organized in a standard format.

6-11

E&V Guidebook, Version 3.0

6.8 COMPILATION CHECKLIST

Purpose: Evaluation of the power of compilation by developing a list of functional capabilities.

[@RM: Compilation 7.1.6.7, @RM: Puwer 6.4.221

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capability checklist (see Table 6.8-1) and compiler documentation.
Process: Check off capabilities demonstrated during compiler runs or discussed in the

documentation.
Outputs: A list of capabilities provided by the compiler.

6-12

E&V Guidebook, Version 3.0

Table 6.8-1 Compilation Capabilities Checklist

FEATURE FOUND NOTES

Conditional Compilation
Incremental Compilation
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Error Identification
Set Default Directory For Source
Set listing Width And Height
Specify Different Program Library
Specify Main Program
Disable Use Of SYSTEM Library
Change package SYSTEM
Suppress All Run-Time Checks
Compile Multiple Files
Language Sensitive Editor Support
Specify Error Limit
Enable/Disable An Error Category
Specify Optimization Parameters
Syntax Only Checking
Symbol Table
Variable Set/Use Indications (Cross-reference)
Object Code Listing
Object Attribute Map
Code Statistics
Unidentified Compiler Options (Pragmas)
Controlled Dynamic Storage
Elaboration Control
Inline Expansion Of Subprograms
Interface With Other Languages
Specify Memory Size
Pack Data Representations In Memory
Priority Control Of Concurrent Tasks
Shared Variables
Specify Storage Unit
Specify Alternative System Characteristics
Machine Code Mapping
Machine Code Insertions
Cross Compilation

Error Reporting
Exceptions List

Identify Target Dependencies
Save User Configuration
Shared Generic Support

6-13

E&V Guidebook, Version 3.0

6.9 PROGRAM LIBRARY MANAGEMENT CHECKLIST

Purpose: Evaluation of the completeness and power of program library management by
developing a list of functional capabilities.

[@RM: Program Library Management 7.2.1.7, (@RM: Completeness 6.4.9,
@RM: Granularity 6.4.17,
@RM: Power 6,422)

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 6.9-1) and program library manager documenta-

tion.
Process: Check off capabilities demonstrated by the program library manager or discussed

in the documentation.
Outputs: A list of capabilities provided by the program library manager.

Table 6.9-1 Program Library Management Capabilities Checklist

FEATURE FOUND NOTES

Listing Information
List Of Logical Unit Names
Associated File Names For Unit
Units Using Specified Unit
Units Used By Specified Unit
Size Information
Time-Stamp Information
Kind And Granularity Of Compilation

Element
Units Used To Construct Executable
Completeness And Currency Check
Automatic Build Capability
Automatic Compilation/Recompilation
Spawn Command Language Subprocess
Create Structures
Move Elements Between Libraries
Move Elements Between Directories
Remove Compilation Unit
Obsolescence Management
Library Access Control

Read Only (Shared)
Exclusive

6-14

E&V Guidebook, Version 3.0

6.10 ARTEWG CATALOGUE OF Ada RUNTIME IMPLEMENTATION DEPENDENCIES

Purpose: The purpose of this document is best stated by the following quotation taken from
the rationale section in the catalogue: "The main goal of this catalogue is to be the one
place where all the areas of the Ada Reference Manual...which permit implementation
flexibilities can be found." These implementation dependencies affect the performance
and adaptation characteristics of the generated code. The text describes each known
dependency by a number (which identifies the relevant section and paragraph in the Ada
Reference Manual), a topic or title, a question which poses the implementation issue, a
dependency type (either explicit or implicit), a rationale explaining why the dependency
exists, and an Ada example to further clarify the dependency. (These descriptions could
be used as the basis for an automated test suite.)

[@RM: Compilation 7.1.6.7, (@RM: Anomaly Management 6.4.2,
@RM: Processing Effectiveness 6.4.23,
@RM: Retargetability 6.4.28,
@RM: Storage Effectiveness 6.4.32);

@RM: Runtime Environment 7.2.3.5, (@RM: Anomaly Management 6.4.2,
@RM: Storage Effectiveness 6.4.32)]

Primary References: [ARTEWG 1987] "Catalogue of Ada Runtime Implementation
Dependencies," Association for Computing Machinery, Special Interest Group on Ada,
Ada Runtime Environment Working Group, 1 December 1987.

Vendors/Agents: [ARTEWG]

Method: Questionnaire.
Inputs: Descriptions of implementation dependent features.
Process:

1. Select critical dependencies
2. Build and run tests for each dependency or ask vendor how dependencies are

implemented
3. Select compiler and/or make coding standards based on results of step 2.

Outputs: Evidence showing how features are implemented.

6-15

E&V Guidebook, Version 3.0

6.11 ARTEWG RUNTIME ENVIRONMENT TAXONOMY

Purpose: Describes the basic elements of Ada runtime environments and provides a common
vocabulary. The following excerpt is taken from the introduction to the Taxonomy section.
"If a runtime environment for an Ada program is composed of a set of data structures, a
set of conventions for the executable code, and a collection of predefined routines, then
the question arises: what are examples of these elements, and moreover, what is the
complete set from which such elements are taken vhen a particular runtime environment
is built? ...It should be noted that the dividing line between the predefined runtime support
library on one hand, and the conventions and data structures of a compiler on the other
hand, is not always obvious. One Ada implementation may use a predefined routine to
implement a particular language feature, while another implementation may realize the
same feature through conventions for the executable code.... This taxonomy concerns itself
primarily with those aspects of the runtime execution architecture which are embodied as
routines in the runtime library. It does not treat issues of code and data conventions, nor
issues related to particular hardware functionalities, in any great depth."

[@RM: Runtime Environment 7.2.3.5, @RM: Completenews 6.4.91

Primary References: [ARTEWG 1988] "A Framework for Describing Ada Runtime
Environments," Proposed by Ada Runtime Environment Working Group (SIGAda), Ada
Letters, Volume VIII, Number 3, May/June 1988, pp. 51-68.

Vendors/Agents: [ARTEWG]

Method: Questionnaire.
Inputs: Questionnaire (see Table 6.11-1) and runtime environment documentation.
Process: Describe capabilities demonstrated by the runtime environment or discussed in

the documentation.
Outputs: A description of capabilities provided by the runtime environment.

6-16

E&V Guidebook, Version 3.0

Table 6.11-1 Runtime Environment Taxonomy

CAPABILITY DESCRIPTION

Runtime Execution Model
Generated Code

Number of Areas for Package Data
Mechanism for Uplevel Referencing of Objects (static link or display)
Subprogram Call Sequences
Parameter Passing Mechanisms
Register Usage
Preservation of Registers across Subprogram Calls
Representation of Pointers
Implementation of Runtime Type Checks
Data Structures in the RTE

Division between Inline Code and Runtime Routines
Tasking Constructs
Memory Management
Exception Management
Attributes
Miscellaneous Common!y Invoked Routines

Use of Target Instruction Set Architecture
User-Visible Interfaces to Extend the Runtime System

Dynamic Memory Management
Stack Management
Heap Management

Single Heap or One Heap/Task
Arrangement of Storage for Collections

Storage Reclamation
None
Explicit (Unchecked Deallocation)
Garbage Collection
Pragma Controlled

Processor Management
Block Tasks
Unblock Tasks
Selection of Tasks which Actually Run

Task Priorities
Assignment to Physical Processor

6-17

E&V Guidebook, Version 3.0

Table 6.11-1 Runtime Environment Taxonomy (Continued)

CAPABILITY DESCRIPTION

Interrupt Management
Asynchronous Events

Timer Interrupts
1/0 Interrupts
Hardware Failures
Others

Program Synchronous Events
Arithmetic Overflow
Arithmetic Underflow
Divide by Zero
Others

Address Clauses for Task Entries
Interrupt Initialization
Interrupt Resetting

Time Management
Package Calendar
Delay Statement Implementation

Exception Management
Finds Exception Handler for Exception
Transfers Control to Exception Handler

Rendezvous Management

Task Activation

Task Termination
Task Completion
Task Termination
Task Abortion

I/O Management
Predefined Packages from Chapter 14 of LRM
Additional I/O Facilities

Commonly Called Code Sequences
Multi-Word Arithmetic Operations
Block Moves
String Operations
Attribute Calculations
Others

Target Housekeeping Functions
Starting the Execution Environment

Determining the Hardware Environment
Determining the Scftware Environment
Processor Initialization
Interrupt Initialization
Other

Terminating the Execution Environment

6-18

E&V Guidebook, Version 3.0

6.12 COMPILER ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of the compiler shown in Fig.
6.12-1. Requirements for each element in the hierarchy are listed for certain attributes.
Each requirement is augmented by one or more questions which address the requirement.

f@RM: Compilation 7.1.6.7, (@RM: Anomaly Management 6.4.2,
@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35,
@RM: Visibility 6.4.40);

@RM: Runtime Environment 7.2.3.5, (@RM: Anomaly Management 6.4.2,
@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Commonality 6 A -7
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4,17,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22
@RM: Pro.ssing Effectiveness 6.4.23,
@RM: Prcprietary Rights 6.4.24,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35,
@RM: Visibility 6.4.40)]

Primary References: [E&V Report 19841 "Requirements for Evaluation and Validation of Ada
Programming Support Environments, Version 1.0," 17 October 1984, Appendix B of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright Aeronautical
Laboratories, November 1984, pp. B-45-B-85, DTIC Number AD A153 609.

[Requirements for E&V 4.5]

Vendors/Agents: [E&V Team]

6-19

E&V Guidebook, Version 3.0

Method: Questionnaire.
Inputs: Questionnaire and compiler documentation.
Process: Answer questions based on documentation, using the compiler, or asking the

vendor.
Outputs: Completed questionnaire.

Input
Command Language
User Assistance
Source Statements

Translation
Analysis
Intermediate Forms
Optimization
Symbol Table

Code Generation
Debugging
Optimization

Output
Analysis
Cross-Reference
Listing
Object Module

Runtime System
Memory Management

Task Management
Distributed Processing
Parallel Processing

Exception Handling
Data Management
Mathematical Functions

Figure 6.12-1 Compiler Hierarchy

6-20

E&V Guidebook, Version 3.0

6.13 WEIDERMAN: COMPILER EVALUATION LISTS

Purpose: This handbook "describes the dimensions along which a compilation system should
be evaluated, enumerates some of the criteria that should be considered along each
dimension, and provides guidance with respect to a strategy for evaluation." Table 6.13-1
below provides a "list of lists" found in Chapters 5, 6, and 8 of the handbook. Refer to
the handbook itself for the actual elements of each list. In some cases the elements are
simply listed; in other cases they are annotated with additional explanation and discussion.

(@RM: Compilation 7.1.6.7, (@RM: Capacity 6.4.6,
@RM: Cost 6.4.11,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32)]

Primary References: [Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler
Evaluation and Selection, Version 1.0," Software Engineering Institute, Technical Report
CMU/SEI-89-TR-13, March 1989, DTIC Number AD A207 717.

[Weiderman: Compiler Evaluation and Selection 4.18]

Vendors/Agents: [SEI]

Method: Checklists and Questionnaires
Inputs: Lists, characterization forms, and accompanying discussion (see Table 6.13-1).
Process: Employ lists to evaluate appropriate dimensions, as indicated in the handbook.
Outputs: Lists of capabilities and completed characterization forms.

6-21

E&V Guidebook, Version 3.0

Table 6.13-1 Compiler Evaluation Lists

Compile/Link-Time Issues (Chapter 5)
* Compiler options often provided (5.1.1)
* Implementation-defined pragmas (5.1.2)
* Other important compiler features (5.1.4)
• Factors influencing "lines of code per minute" (5.2)
* Questions to be answered (5.2)
* Capacities and limits tested by the AES [5.7] (5.2)
* Documentation characteristics (5.4.3)

Execution-Time Issues (Chapter 6)
* Features not likely to generate calls to the runtime system (6.2.7)
" Features likely to generate calls to the runtime system (6.7.2)
* Optimizations that can be performed (6.2.3)
* Features critical to tasking performance (6.4.1)
* Operations concerning exception handling whose overhead can be

measured (6.4.2)
* Areas of concern related to space efficiency of the runtime system (6.5)
* Useful features of runtime systems (6.6)
* Questions related to interrupt handling (6.8)

Benchmark Issues (Chapter 8)
* Factors causing variation in results (8.2)

- Memory effects
- Processor effects
- Operating and runtime system effects
- Program translation effects

* Standard benchmark configuration information (8.7)
- For the host system
- For the target system
- For all benchmarks

6-22

E&V Guidebook, Version 3.0

6.14 RUNTIME SUPPORT SYSTEM QUESTIONNAIRE

Purpose: Characterization and evaluation of the Runtime Support (RTS) system.

[@RM: Runtime Environment 7.2.3.5, (@RM: Anomaly Management 6.4.2
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Distributedness 6.4.12
@RM: Functional Scope 6.4.15,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Power 6.4.22
@RM: Reconfigurability 6.4.25,
@RM: Retargetability 6.4.28,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35)1

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 6.14-1) and runtime support system documentation.
Process: Answer questions based on documentation, using the runtime support system, or

asking the vendor.
Outputs: Completed questionnaire.

6-23

E&V Guidebook, Version 3.0

Is support provided for - single processor only?
- multiple homogenous processors?
- multiple heterogenous processors?

* calls made to another process?
* actual synchronization?

Is support provided for - single programs?
- multiple programs?

Is support provided for - tight coupling (characterized by shared/common memory)
- loose coupling (communicate but no shared/common
memory)

Does the RTS - require use of the operating systems?
- accept instructions from the operation system?
- replace the operating system?

Is the RTS - modularly constructed?
- modifiable (standard modifications or user-defined)?
- sub-settable?
- fault tolerant?
- secure?

What are the language features that are supported?

- How are they supported?

Figure 6.14-1 Runtime Support System Questionnaire

6-24

E&V Guidebook, Version 3.0

6.15 HARTSTONE SYNTHETIC BENCHMARK

Purpose: The purpose of the first paper cited below "... is to define the operational concept
for a series of benchmark requirements to be used to test the ability of a system to handle
hard real-time applications. In the tradition of Whetstone and Dhrystone, we will call these
the "Hartstone" benchmarks, where "Hart" is derived from Hard Real-Time. These will
be synthetic benchmarks in the spirit of Whetstone and Dhrystone, and their definition will
make it possible to compare a number of hardware/software/algorithm architectures.
Several programs written in Ada for a specific machine configuration will be available from
the SEI as examples of implementations of the requirements."

The following categories of tests are described:

* PH -- Periodic Tasks, Harmonic Frequencies

* PN -- Periodic Tasks, Non-Harmonic Frequencies

* AH -- PH Series with Aperiodic Processing Ad"ed

* SH -- PH Series with Synchronization

* SA -- PH Series with Aperiodic Processing and Synchronization

The second document cited below is a Hartstone User's Guide. It describes the structure
and behavior of one category of Hartstone requirements, the Periodic Harmonic (PH) Test
Series. It also provides guidelines for performing experiments and interpreting the results,
as well as source code listings and information on how to obtain source code in
machine-readable form.

[@RM: Compilation 7.1.6.7, (@RM: Accuracy 6.4.1,
@RM: Processing Effectiveness 6.4.23);

@RM: Runtime Environment 7.2.3.5, (@RM: Accuracy 6.4.1,
@RM: Processing Effectivenes 6.4.23)]

Primary References: [Weiderman 1989a] N.H. Weiderman, "Hartstone: Synthetic Benchmark
Requirements for Hard Real-Time Applications," SEI-89-TR-23, Software Engineering
Institute, June 1989. (reprinted in Ada Letters special PIWG issue [@PIWG 1990])

[Donohoe 1990] P. Donohoe, R. Shapiro, and N.H Weiderman, "Hartstone Benchmark
User's Guide, Version 1.0," SEI-90-UG-1, Software Engineering Institute, March 1990.

[Donohoe 1990a] P. Donohoe, R. Shapiro, and N.H. Weiderman, "Hartstone Benchmark
Results and Analysis, Version 1.0," SEI-90-TR-7, Software Engineering Institute, June 1990.

[Ada Performance Issues (PIWG Special Edition) 4.19]

Vendors/Agents: [SEI]

6-25

E&V Guidebook, Version 3.0

Method: Test suite
Inputs: SEI source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain the Hartstone tests and documentation.
2. Modify the test code as necessary.
3. Compile and run according to the documentation.

Outputs: Reports on the number of missed deadlines for each test run.

6-26

E&V Guidebook, Version 3.0

6.16 Ada COMPILER PERFORMANCE TEST SUITE (ACPS)

Purpose: The purpose of the ACPS is to "assist users in evaluating the performance of runtime
environments provided by Ada compilation systems." The test suite contains feature tests
as well as composite tests. A unique feature of this suite is that there are Ada, JOVIAL,
and FORTRAN files so that the three languages can be compared on machines that
support these languages.

[@RM: Compilation 7.1.6.7, (@RM: Processing Effectiveness 6.4.23,
@RM: Storage Effectiveness 6.4.32);

@RM: Runtime Environment 7.2.3.5, (@RM: Processing Effectiveness 6.4.23,
@RM: Storage Effectiveness 6.4.32)]

Primary References: [Byrne 1990] D.J. Byrne and R.C. Ham, "Ada Versus FORTRAN Perfor-
mance Analysis Using the ACPS," (pp. 139-145) of Ada Letters, Special Edition from
SIGAda, the ACM Special Interest Group on Ada Performance Issues Working Group,
Vol. X, Number 3, Winter 1990. [@PIWG 1990]

[Ada Performance Issues (PIWG Special Edition) 4.19]

Vendors/Agents: [Aerospace Corp.]

Method: Test suite.
Inputs: ACPS source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain the ACPS tests
2. Compile and run according to the documentation.

Outputs: Reports on the execution times and memory sizes of each test run.

6-27

E&V Guidebook, Version 3.0

6.17 PRODUCTION QUALITY Ada COMPILER (PQAC) TEST SUITE

Purpose: The Aerospace Corporation basically has taken the 149 requirements of "The
Definition of a Production Quality Ada Compiler" (SD-TR-87-29) very literally and applied
a test suite with a weighing scheme. It is mostly a pass-fail system of tests rather than a
complete performance evaluation. The Definition has performance requirements, e.g.,
"The compiler shall compile a syntactically and semantically correct Ada program of at
least 200 Ada source statements at a rate of at least 200 statements per minute (elapsed
time), for each 1 MIPS of rated processing speed of the specified host computer, while
meeting the object code requirements in 2.5.1 and 2.5.2." It has capacity requirements,
e.g., 2,500,000 source statements in a program, 1024 type declarations, and 64 formal
parameters in an accept. It has user interface requirements, e.g., "The compiler shall
implement an option to disable the generation of diagnostic messages of a specified
severity level." It has external tool interface requirements, e.g., "The compiler and/or
linker/loader shall support the partial linking of object modules as specified by the user."
It has Ada language requirements in the following categories: general, character sets, data
representation, subprograms, tasking, exceptions, generics, interfaces with other languages,
I/O. system information, and pragmas. It has quality assurance and reliability requirements,
e.g., "Production quality compilers should exhibit an error rate of no more than 1 verified
new error for each 250,000 new lines of Ada compiled. This rate shall decrease over time
as the compiler matures." Finally there are documentation requirements, e.g., "The vendor
shall provide a Run-time System Manual for each compiler configuration." There are Ada
programs for all the requirements, even those that require inspection. It comes with a
"code expander" (program generator) for the capacity tests.

The documents consist of two volumes. The first report outlines a procedure for using
"The Definition of a Production Quality Ada Compiler" (SD-TR-87-29) as the basis for
determining if an Ada compiler is of production quality. The report describes the
development of a test suite from the requirements set forth in SD-TR-87-29, as well as the
results of applying this test suite to two validated Ada compilers. An analysis of
SD-TR-87-29 from creating and applying the test suite has also been provided (sic). The
second volume contains the PQAC test suite source code and operating instructions. This
test suite was derived from the requirements in the SD-TR-87-29.

[@RM: Compilation 7.1.6.7, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23)?

Primary References: [Petrick 19891 B.A. Petrick and S.J. Yanke, "An Analysis of The Definition
of a Production Quality Ada Compiler," Engineering Group, The Aerospace Corporation,
Volume I (SSD-TR-89-81) and Volume II (SSD-TR-89-82, PQAC Test Suite), 13 March
1989.

Vendors/Agents: [Aerospace]

6-28

E&V Guidebook, Version 3.0

Method: Test suite.
Inputs: PQAC source code, Ada compiler and runtime system, and host (and target)

computer.
Process:

1. Obtain the PQAC tests
2. Compile and run according to the documentation.

Outputs: Raw data and pass/fail designation for each test run.

6-29

E&V Guidebook, Version 3.0

6.18 Ada COMPILER SPECIFICATION AND SELECTION QUESTIONNAIRES

Purpose: "The Ada language reference manual defines the language rather than indicating a
list of the desirable properties of an implementation of the language. The purpose of this
guide is to list the characteristics of an implementation that should be taken into account
in the specification or selection of an Ada compiler."

[@RM: Compilation 7.1.6.7, (@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Documentation Quality 6.4.13,
@RM: Functional Overlap 6.4.14,
@RM: Granularity 6.4.17,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Software Production Vehicle(s) 6.4.31,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35);

@RM: Runtime Environment 7.2.3.5, (@RM: Processing Effectiveness 6.4.23,
@RM: Storage Effectiveness 6.4.32)]

Primary References: [Nissen 1984] J.C.D. Nissen, B.A. Wichmann, et al., "Guidelines for Ada
Compiler Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W.Rogers, Cambridge University Press, 1984.

[Nissen, et al: Guidelines for Ada Compiler Specification and Selection 4.17]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaires.
Inputs: Questionnaires (see Table 6.18-1) and compilation system documentation.
Process: Answer questions based on documentation, using the compilation system, or

asking the vendor.
Outputs: Completed questionnaires.

6-30

E&V Guidebook, Version 3.0

Table 6.18-1 Ada Compiler Specification and Selection Questionnaires

ATIRIBUTE RELEVANT SECTION(S) FROM NISSEN'S
GUIDELINES

Capacity 5.1
Commonality 6.1
Documentation Quality 4.1-4.5, 6.
Functional Overlap 6.1
Granularity 6.1
Modularity 6.1
Operability 4.
Power 4.1-4.3, 4.6
Processing Effectiveness

Compiler 5.
Runtime Environment 5.2, 6.2

Proprietary Rights 8.
Rehostability 2., 3., 7.3
Required Configuration 2., 7.3
Retargetability 2., 3., 7.2
Software Production Vehicle(s) 7.2
Storage Effectiveness

Compiler 5.
Runtime Environment 5.2, 6.2

System Compatibility 6.

6-31

E&V Guidebook, Version 3.0

7. TARGET CODE GENERATION AIDS AND ANALYSIS

TOOLSET ASSESSORS

These tools are used to assess host-target system cross-assemblers; host-based target linkers

and loaders; host-based target system instruction-level simulators/emulators; ho-+-based target-

code symbolic debuggers; and host-based target system instrumentation interfaces which provide

visibility into target processes during program execution. These ass essments are also used in

the case where the host computer is also the target computer.

7-1

E&V Guidebook, Version 3.0

7.1 ASSEMBLING CHECKLIST

Purpose: Evaluation of the power of assembling by developing a list of functional capabilities.

[@RM: Assembling 7.1.6.6, @RM: Power 6.4.221

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.1-1) and assembler documentation.
Process: Check off capabilities demonstrated during assembler runs or discussed in the

documentation.
Outputs: A list of capabilities provided by the assembler.

Table 7.1-1 Assembling Capabilities Checklist

FEATURE FOUND NOTES

Code Generation
Macro Preprocessing
Conditional Assembly
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Set Listing Width and Height
Suppress All Run-Time Checks
Assemble Multiple Files
Specify Error Limit
Enable/Disable An Error Category
Syntax Only Checking
Symbol Table
Code Statistics
Cross Assembly

7-2

E&V Guidebook, Version 3.0

7.2 LINKING/LOADING CHECKLIST

Purpose: Evaluation of the power of linking/loading by developing a list of functional
capabilities.

[@RM: Linking/Lxmding 7.1.6.13, @RM: Power 6.4.221

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.2-1) and linker/loader documentation.
Process: Check off capabilities demonstrated during linker/loader runs or discussed in the

documentation.
Outputs: A list of capabilities provided by the linker/loader.

Table 7.2-1 Linking/Loading Capabilities Checklist

FEATURE FOUND NOTES

Non-Specific Language Linking
Deferred (After A Specific Time)
Enable/Disable Link Map Generation
Specify Full/Brief Link Map
Generate A Link Command File
Enable/Disable Symbol Cross-Reference
Generate Debug Information
Enable/Disable Execution File Creation
Specify Batch/Nobatch Operation
Specify Map File Name
Specify Object File Name
Specify Diagnostic Output File
Enable/Disable System Library Search
Enable/Disable Traceback Information
Library Search Capabilities
Extended Options Capabilities
Sharable Image Support
Specify Maximum Memory
Specify Optimization Parameters
Force Load
Enable/Disable Library Trace
Specify Main Program
Non-Specific Language Main Program
Overlays
Link-Time Dead Code Elimination

7-3

E&V Guidebook, Version 3.0

7.3 IMPORT/EXPORT CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of import/export by developing a list of functional
capabilities.

[@RM: Import/Export 7.2.3.6, @RM: Completeness 6.4.91

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.3-1) and import/export documentation.
Process: Check off capabilities demonstrated by the import/export system or discussed in

the documentation.
Outputs: A list of capabilities provided by the import/export system.

Table 7.3-1 Import/Export Capabilities Checklist

FEATURE FOUND NOTES

Host to Target Object Downloading
Target to Host Data Uploading

Note: This table will be expanded in a future version of the Guidebook.

7-4

E&V Guidebook, Version 3.0

7.4 EMULATION CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of emulation by developing a list of functional capabilities.

[@RM: Emulation 7.3.2.13, @RM: Power 6.4.221

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.4-1) and emulation system documentation.
Process: Check off capabilities demonstrated by the emulation system or discussed in the

documentation.
Outputs: A list of capabilities provided by the emulation system.

Table 7.4-1 Emulation Capabilities Checklist

T
FEATURE FOUND NOTES

Session security (lock-out unauthorized users)
RS-232 interface to host (portable among hosts)
Replaceable target pods (portable among targets)
Support for simulating hardware devices
Switching screen (user vs. debug displays)
Read/write access to program library symbols
Runtime controls of the state of the emulator
Read/write access to target memory and I/O
Full-speed execution with active breakpoints
Full-speed execution while tracing
Dynamic window for variables
Multi-task tracing
Exception tracing

7-5

E&V Guidebook, Version 3.0

7.5 DEBUGGING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of debugging by developing a list of
functional capabilities.

[@RM: Debugging 7.3.2.5, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)]

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.5-1) and debugger documentation.
Prncess: Check off capabilities demonstrated by the debugger or discussed in the

documentation.
Outputs: A list of capabilities provided by the debugger.

7-6

E&V Guidebook, Version 3.0

Table 7.5-1 Debugging Capabilities Checklist

FEATURE FOUND NOTES

Instrumentation
Statement
Branch
Block
CSU
CSC

Machine Level Debugging
Host-Based Target Debugging
Support for Debugging Multiple Processors from Single Terminal
Customization of Debugger for New Target Environment

Symbolic Debugging
Tracing

Breakpoint Control
Data Flow Tracing
Path Flow Tracing
Selectable Level Of Granularity

Display
Program Source
History
Stack (Calling Hierarchy)
Tasks
Rendezvous Status
Breakpoints
Tracepoints
Memory
Collections And Global Heaps
Name Of Current Exception

Evaluate Objects
Step

Single
By Discrete Amounts
Into Subprograms
Over Subprograms
To Next Scheduling Event
To Next Exception
To End of Program Unit

Miscellaneous
Symbol Abbreviation
Set Context For Control
Input Debugger Command Files
Modify Variable Values
Modify Object Code
Modify Control Flow
Console Interrupt
Full Screen Mode
Keypad For Entering Commands
Virtual Clock
Special Compilation Mode
Multi-Language Support
Complete Ada Language Support with Deep Nesting
Dynamic Interrupt
Optimization Support
Units Comprising Executable
Locate Objects with Overloaded Names
No Overhead to Explicitly Create a Debug File

7-7

E&V Guidebook, Version 3.0

7.6 TIMING ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of timing analysis by developing a list of functional
capabilities.

[@RM: Timing Analysis 7.3.2.14, @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.6-1) and timing analysis system documentation.
Process: Check off capabilities demonstrated by the timing analysis system or discussed in

the documentation.
Outputs: A list of capabilities provided by the timing analysis system.

Table 7.6-1 Timing Analysis Capabilities Checklist

FEATURE FOUND NOTES

Timing Instrumentatlon
Intrusive
Non-Intrusive
User Specified Error Tolerances
Use of Timing Loop
Repetitive Execution Until Stable Convergence
Measurement of Overhead Execution
Test for Clock Jitter
System Clock Accuracy Consideration
Hardware Organization (Cache. Pipeline ...) Considerations
Operating System (Virtual, Multiprocessing...) Considerations
Size of Test Problem Considerations

Fraction By Section Of Code

Tasking Monitor
Fraction Fxecuting
Fraction Runnable
Fraction Runnable and not Executing
Time Between Runnable and Executing
Time Between Events
System Idle Time

Miscellaneous
Timing Loop Code is System Independent
' pecial Hardware is not Needed
Code to be Measured is Easily Installed
Output Shows Variations in Measurements
Statistical Measurements are Available
Use of Computer Resources is Minimized
Measures Either Wall or Clock Time

7-8

E&V Guidebook, Version 3.0

7.7 REAL-TIME ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of real-time analysis by developing a list of functional
capabilities.

[@RM: Real-Time Analysis 7.3.2.17, @RM: Completeness 6.4.91

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 7.7-1) and real-time analysis system documenta-

tion.
Process: Check off capabilities demonstrated by the real-time analysis system or discussed

in the documentation.
Outputs: A list of capabilities provided by the real-time analysis system.

Table 7.7-1 Real-time Analysis Capabilities Checklist

FEATURE FOUND NOTES

Hardware-In-The-Loop
Non-Intrusive Instrumentation
Performance Analysis
Symbolic Trace

7-9

E&V Guidebook, Version 3.0

7.8 INSTRUCTION-LEVEL SIMULATION CHECKLIST

Purpose: Evaluation of the completeness of instruction-level simulation by developing a list of
functional capabilities.

[@RM: Simulation and Modeling 7.3.2.3, @RM- Completeness 6.4.91

Primary References: [Weiderman 1987a] N.H. Weiderman, et al., "Ada for Embedded Systems:
Issues and Questions," Software Engineering Institute, Technical Report CMU/SEI-87-TR-
26, December 1987, DTIC Number AD A191 096.

Vendors/Agents: [SEI]

Method: Checklist.
Inputs: Capabilities checklist (see Table 7.8-1) and instruction-level simulation system

documentation.
Process: Check off capabilities demonstrated by the instruction-level simulation system or

discussed in the documentation.
Outputs: A list of capabilities provided by the instruction-level simulation system.

Table 7.8-1 Instruction-level Simulation Checklist

FEATURE FOUND NOTES

Accurately simulates both the functional and temporal
behavior of the target's instruction set architecture

Provides access to all memory locations and registers

Supports typical features found in a symbolic debugger
Single-step instruction execution
Examines variable values
Start/stop program execution

Performs timing analysis
Provides assembler instruction execution times
Provides Ada instruction execution times
Provides Ada subprogram execution times

Supports simulated input/output interaction
Provides access to [/O ports
Provides access to device control and data registers
Emulates the architecture's interrupt mechanism

Facilitates the set-up and reuse of test sessions
Freezes the current session's context
Executes debugger commands from script iles
Supplies I/O data from existing data files

7-10

E&V Guidebook, Version 3.0

7.9 SEI DEBUGGING EXPERIMENT

Purpose: Evaluation of an environment's capabilities, from the point of view of the unit tester.
An experiment was designed to simulate the activities normally associated with small
projects, namely the design, creation, modification, and testing of a single unit or module.
See also the SEI Design Support Experiment [10.1].

[@RM: Debugging 7.3.2.5, (@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23)]

Primary References: [Weiderman 1987] N.H. Weiderman and A.N. Habermann, "Evaluation
of Ada Environments," Software Engineering Institute, Technical Report CMU/SEI-87-TR-
1, March 1987, Chapter 5, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments 4.13]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment.
Inputs: The "generic" experiment description, an APSE, and host (and target) computer.
Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and carry

it out.
Outputs: A filled-in table of functional elements present and missing, elapsed time and cpu

time values, and subjective judgments based on the experience.

7-11

E&V Guidebook, Version 3.0

7.10 Ada-EUROPE: DEBUGGING QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 15
discusses issues associated with testing, debugging, and dynamic analysis (coverage analysis,
symbolic evaluation, mutation analysis, facilities for symbolic interaction, breakpoints and
single stepping, tracing, multitasking and real time features, debugging of multiprocessor
systems, monitor on the target, simulation, emulation, and other tools for dynamic analysis).

(@RM: Debugging 7.3.2.5, @RM: Completenesn 6.4.91

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986, Chapter
15.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

7-12

E&V Guidebook, Version 3.0

7.11 ACEC SYMBOLIC DEBUGGER QUESTIONNAIRE

Purpose: The Ada Compiler Evaluation Capability (ACEC) Version 2.0 was developed by
Boeing Military Airplanes for the Air Force Wright Research and Development Center
(WRDC). Its primary purpose is to provide the capability to determine the performance
and usability characteristics of Ada compilation systems. The ACEC consists of the ACEC
Software Product and three supporting documents: the ACEC User's Guide, the ACEC
Reader's Guide, and the ACEC Version Description Document.

ACEC Software Product - The ACEC Software Product consists of performance tests,
assessor tools, and support software. Among other things (see [6.3]), the software product
makes it possible to determine whether the functional capabilities of a symbolic debugger
are sufficient to accomplish a set of predefined scenarios. The main emphasis of the
ACEC is measuring execution time efficiency, but it also addresses code size efficiency and
compile time efficiency. The assessor tools provide assistance in evaluating symbolic
debuggers, program library systems, and compiler diagnostics. The support software is a
set of tools and procedures which assist in preparing and executing the test suite, in
extracting data from the results of executing the test suite, and in analyzing the perfor-
mance measurements obtained.

The ACEC Software Product is developed for a variety of targets and is distributed on one
9-track, 1600 bpi, VAX/VMS backup tape.

ACEC User's Guide, ACEC Reader's Guide, ACEC Version Description Document - For
descriptions, see [6.3].

Document Distribution - The ACEC User's Guide, ACEC Reader's Guide, and the ACEC
Version Description Document are available individually in hard copy form or as a package
distributed on one 9-track, 1600 bpi, VAX/VMS backup tape. NOTE: The package is
distributed as an ASCII text file embedded with LaTeX formatting commands.

The second version of the ACEC was released in May 1990.

[@RM: Debugging 7.3.2.5, (@RM: Completeness 6.4.9.
@RM: Operability 6.4.21.
@RM: Power 6.4.22)l

Primary References: [ACEC 1990] "Ada Compiler Evaluation Capability (ACEC) Technical
Operating Report (TOR) Reader's Guide," Air Force Wright Research and Development
Center, D500-12471-1, May 1990.

[ACEC 1990a] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User's Guide," Air Force Wright Research and Development Center, D500-12470-
1, May 1990.

[ACEC 1990b] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) Version Description Document," Air Force Wright Research and Development
Center, D500-12472-1, May 1990.

7-13

E&V Guidebook, Version 3.0

Vendors/Agents: [DACS]

Method: Automated test suite and questionnaires.
Inputs: ACEC source code, Ada compilation system and symbolic debugger, host and

target computer.
Process:

1. Obtain the ACEC.
2. Compile and run the tests according to the documentation.
3. Answer the questions by running the tools, reading the documentation, or asking the

vendor.
4. Use the analysis tools on the test outputs.

Outputs: Reports and/or completed questionnaires containing the assessment of the tools
for the selected tests.

7-14

E&V Guidebook, Version 3.0

8. TEST SYSTEMS ASSESSORS

These assessors examine the ability of the APSE or APSE component to support and
facilitate the planning, development, execution, evaluation, and documentation of tests of

software.

8.1 TESTING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of testing by developing a list of functional
capabilities.

[@RM: Analysis 7.3, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)]

Primary References: [DeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and
Evaluation Subenvironment in an Advanced Software Engineering Environment," Georgia
Institute of Technology GIT-SERC-86/07, 20 October 1986.

Vendors/Agents: [GIT]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 8.1-1) and testing system documentation.
Process: Check off capabilities demonstrated by the testing system of discussed in the

documentation.
Outputs: A list of capabilities provided by the testing system.

8-1

E&V Guidebook, Version 3.0

Table 8.1-1 Testing Capabilities Checklist

FFATURE FOUND NOTES

Static Analyzers
Code Auditors
Consistency Checkers
Interface Analyzers
Completeness Checkers

Tool Building Services
Common "Front-End" Facilities for Languages of

Interest (Parsing, Source & Internal Form Ma-
nipulation, Execution Facilities)

Tool Composition Aids

Test Building Services (including Test Data Generators)
Symbolic Evaluators
Component Coverage Analyzers
Data Flow Analyzers
Assertion Processors
Mutation Analyzers
Path and Domain Selection Aids
Random Test Generators

Test Description and Preparation Services
Data Editors
Data Auditors
Body/Stub Generators
File Comparators
Data/File Services
Software and System Test Communications Faciiities

Test Execution Services
Test Harness Generator
Data and Error Logging Services
Quality Measurement Tools

Test Analysis Services
Correctness Analyzers (Oracles)
Instrumentation Aids
Status Display Tools
Data Reduction and Analysis Tools
Cross-reference (Traceability) Management and Anal-

ysis Tools

Decision Support Services
Documentation Services
Information Repositories
Problem Report Processing and Analysis Tools
Change Request Processing and Analysis Tools

8-2

E&V Guidebook, Version 3.0

8.2 SEI UNIT TESTING EXPERIMENT

Purpose: Evaluation of an environment's capabilities, from the point of view of the unit tester.
An experiment was designed to simulate the activities normally associated with small
projects, namely the design, creation, modification, and testing of a single unit or module.
See also the SEI Design Support Experiment [10.1].

[@RM: Dynamic Analysis 7.3.2, (@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23)]

Primary References: [Weiderman 1987] N.H. Weiderman and A.N. Habermann, "Evaluation
of Ada Environments," Software Engineering Institute, Technical Report CMU/SEI-87-TR-
1, March 1987, Chapter 5, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments 4.13]

Host/OS: VAX/VMS and VAXIUNIX

Vendors/Agents: [SEI]

Method: Structured experiment.
Inputs: The "generic" experiment description, an APSE, and host (and target) computer.
Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and carry

it out.
Outputs: A filled-in table of functional elements present and missing, elapsed time and cpu

time values, and subjective judgments based on the experience.

8-3

E&V Guidebook, Version 3.0

8.3 STEM/SAIC TEST TOOLS EVALUATION

Purpose: Evaluation of the capabilities of test tools. The goals of this project are to develop
evaluation procedures, identify and classify test tools, evaluate some tools, and contribute
to the STEM database [@STSC 1990]. A hierarchical checklist has been developed.
including the following top-level categories:

Tool Information
Functions
Configuration Requirements
User Information
Vendor
Modification and Maintenance
Reliability
Contractual Matters
Cost
Training
Documentation
Installation
Operation

The cited reference provides second and third level entries under the above categories.

[@RM: Comparison 7.3.1.1, (@RM: Accuracy 6.4.1.
@RM: Anomaly Management 6.4.2.
@RM: Augmentability 6.4.4,
@RM: Autonomy 6.4.5,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10.
@RM: Cost 6.4.11.
@RM: Distributedness 6.4.12.
@RM: Documentation Quality 6.4.13.
@RM: Generality 6.4.16.
@RM: Maturity 6.4.19,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23.
@RM: Proprietary Rights 6.4.24.
@RM: Reconfigurability 6.4.25.
@RM: Rehostability 6.4.26.
@RM: Required Configuration 6.4.27.
@RM: Retargetability 6.4.28,
@RM: Self-Descriptiveness 6.4.29,
@RM: Simplicity 6.4.30,
@RM: Storage Effectiveness 6.4.32,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38.
@RM: Visibility 6.4.40);

01 RM: Auditing 7.3.1.22, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Augmentability 6.4.4,
@RM: Autonomy 6.4.5.

8-4

E&V Guidebook, Version 3.0

@RM: Capacity 6.4.6,

@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Distributedness 6.4.12,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Maturity 6.4.19,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Power 6.4.22Z
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Reconfigurability 6.4.25,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Self-Descriptiveness 6.4.29,
@RM: Simplicity 6.4.30,
@RM: Storage Effectiveness 6.4.32,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38,
@RM: Visibility 6.4.40);

@RM: Dynamic Analysis 7.3.2, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Augnientability 6.4.4,
@RM: Autonomy 6.4.5,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8.
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10.
@RM: Cost 6.4.11.
@RM: Distributedness 6.4.12,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Maturity 6.4.19,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Reconfigurability 6.4.25,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetahility 6.4.28,
@RM: Self-Descriptiveness 6.4.2.9.
@RM: Simplicity 6.4.30.
@RM: Storage Effectiveness 6.4.32,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38,
@RM: Visibility 6.4.40)]

Primary References: [Hampton 1990] J.Hampton, D.Dyer, and G.Daich, "STEM for Test
Tools," USAF STSC - HO USAF/SC Joint Software Conference Proceedings, Salt Lake
City, 23-26 April 1990 [@STSC 1990].

[Software Tool Evaluation Model (STEM) 4.20]

8-5

E&V Guidebook, Version 3.0

Vendors/Agents: [STSC, SAIC]

Method: Capabilities Checklist and Questionnaire
Inputs: Capabilities checklist, questionnaire, test tool, and its documentation.
Process: 1) Check off capabilities demonstrated by testing or discussed in the

documentation.
2) Record information about the test tool requested by the questionnaire.

Outputs: A list of capabilities provided by the tool and other important information about
the tool.

8-6

E&V Guidebook, Version 3.0

8.4 Ada-EUROPE: TESTING AND DYNAMIC ANALYSIS QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
19801; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 15
discusses issues associated with testing, debugging, and dynamic analysis (coverage analysis,
symbolic evaluation, mutation analysis, facilities for symbolic interaction, breakpoints and
single stepping, tracing, multitasking and real time features, debugging of multiprocessor
systems, monitor on the target, simulation, emulation, and other tools for dynamic analysis).

[(@RM: Simulation and Modeling 7.3.2.3,
@RM: Coverage/Frequency Analysis 7.3.2.8,
@RM: Mutation Analysis 7.3.2.9,
@RM: Symbolic Execution 7.3.2.10,
@RM: Resource Utilization 7.3.2.12,
@RM: Emulation 7.3.2.13,
@RM: Real-Time Analysis 7.3.2.17), @RM: Completeness 6.4.91

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986, Chapter
15.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

8-7

E&V Guidebook, Version 3.0

9. TOOL SUPPORT COMPONENT ASSESSORS

These assessors evaluate or validate implementations of specifications for tool support

components. Components that may be assessed could include a CAIS or a CAIS-A

implementation, Portable Common Tool Environment (PCTE) implementations, and Ada

language interfaces to the UNIX operating system and its variants (e.g., Berkeley UNIX,

System V, A/UX, POSIX). Also included here are window managers (such as X-windows),

language bindings to standard interface specification implementations (such as Ada bindings

to GKS or SQL), /O pipes, and RAM cache.

9-1

E&V Guidebook, Version 3.0

9.1 CAIS IMPLEMENTATION VALIDATION CAPABILITY (CIVC)

Purpose: The CIVC contract, awarded to SofTech, Inc., is developing a validation test suite to
assess conformance of DoD-STD-1838 (CAIS) and MIL-STD-1838A (CAIS-A) implemen-
tations. The CAIS (Common APSE Interface Set) is an extensive set of interfaces to
support the development of transportable tools for use in Ada Programming Support
Environments (APSEs). The CIVC has successfully applied information modeling to the
test coverage design and assessment required for validation testing. Hypermedia has been
used for the delivery of test requirements, test designs and their associated traceability
relationships. Version 1 of the CIVC (CIVC1) was delivered in February 1990 and
comprises a test suite of over 250 tests. SofTech is preparing Version 2 of the CIVC
(CIVC2) for delivery in February 1992 and will include over 500 tests. A beta version of
CIVC2 derived from the porting of CIVC1 and containing 147 tests was delivered in July
1990. CIVC1 assesses conformance to DoD-STD-1838, while CIVC2 assesses conformance
to MIL-STD-1838A. The CIVC is funded through the Ada Joint Program Office.

The major software components of the CIVC are the Framework, the Test Administrator,
and the Test Suite. The documentation components consist of the Implementor's Guide,
the Framework, the Test Report Reader's Guide, and the Operator's Guide. Each
component is briefly described below.

CIVC Framework - The CIVC Framework is a hypertext-based product that provides
complete and unique traceability between DoD-STD-1838 and the CIVC1 software product
and MIL-STD-1838A and the CIVC2 software product. This framework product provides
the means for evaluating the correctness of the CIVC product by determining the
completeness and consistency through the development of a full traceability framework.
CIVC has developed hypermedia systems for active presentation of test suite traceability.
These systems significantly increase users' understanding of the derivation of software
products.

CIVC Test Administrator - The Test Administrator provides the CIVC user interfaces
encapsulating any target enviroiiment dependencies for operating the CIVC, and schedules
and executes the CIVC validation tests defined in the Test Suite.

CIVC Test Suite - Test objectives, scenarios, test cases, static compilation tests, and a
report manager constitute the CIVC 'Test Suite. The Test Suite encapsulates the actual
tests which exercise a CAIS implementation and is organized by superclasses. Superclasses
are arbitrary organizations of test classes. Test classes are groups of test cases which
either: i) have similar preconditions, or 2) have preconditions which depend on the
postcondition of a previously executed test case. A preliminary validation capability of
MIL-STD-1838A was delivered in July 1990 as the CIVC2 Beta Test Suite. Test selection
is accomplished by automated analysis and prioritization systems developed by Soffech.
The systems use information models to intelligently select the tests to be developed for the
CIVC. Coverage of the test suite is increased by these methods, and the development
effort consequently is more cost effective.

CIVC Implementor's Guide - The CIVC Implementor's Guide presents the conformance

9-2

E&V Guidebook, Version 3.0

requirements (test objectives) for a CAIS implementation, as well as the top level designs
(scenarios) for the test cases that will validate a CAIS implementation's conformance to
DoD-STD-1838 and MIL-STD-1838A. Also included are the conventions and rationale
used in the development of the CIVC products.

CIVC Framework - See the discussion under the software products above.

CIVC Test Report Reader's Guide - This guide describes the format of the CIVC
Conformance Report and how to interpret the data presented in the Conformance Report.

CIVC Operator's Guide - The Operator's Guide details the host system requirements,
installation, and operation of the CIVC.

Collectively, these products: 1) discover and report ambiguities, incomplete parts, and
other potential impediments to common interpretations of CAIS/CAIS-A, and 2) produce
mechanisms for analyzing and reporting errors in CAIS/CAIS-A implementations that
violate specifications. The beta release of the CIVC2 provides early validation support to
CAIS-A implementors.

[@RM: Kernel 7.2.3.3, @RM: Completeness 6.4.9]

Primary References: [CIVC 1989] "CIVC Implementor's Guide," CIVC-FINL-19-1, SofTech,
Inc., 16 October 1989.

[CIVC 1990] "CIVC1 Framework," CVC-VREL-2/1-01, SofTech, Inc., 1 March 1990.

[CIVC 1990a] "Test Report Reader's Guide with Appendix 1 - Operator's Guide," CIVC-
FINL-020-02, SotTech, Inc., 19 March 1990.

[CIVC 1990b] "CIVC 2.0 Beta Test Suite Operator's Guide," CIVC-FINL-20-03, 18 July
1990.

[CAIS and CAIS-A: DoD-STD-1838 and MIL-STD-1838A 4.16]

Vendors/Agents: [AJPO, SofTech TX]

Method: Automated test suite.
Inputs: The CIVC test suite, CAIS implementation, Ada compiler and runtime s)ysem,

and host computer.
Process: 1. Obtain the CIVC test suite.

2. Compile and run the tests.
3. Collect and analyze the results.

Outputs: Report describing the conformance of various aspects of the CAIS implementa-
tion to DoD-STD- 1838/MIL-STD- 1838A.

9-3

E&V Guidebook, Version 3.0

9.2 TOOL SUPPORT INTERFACE EVALUATION

Purpose: Evaluation of tool support interfaces in terms of four criteria: level, appropriateness,
implementability, and performance. Five "scenarios" were designed and used to exercise
a prototype CAIS implementation and a prototype PCTE implementation. The scenarios
involved a configuration management system, an edit-compile-link-test cycle, a conference
management system, a window manager, and a design editor.

[@RM: Kernel 7.2.3.3, (@RM: Granularity 6.4.17,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: System Clarity 6.4.34)]

Primary References: [Long 1988] F.W. Long, and M.D. Tedd, "Evaluating Tool Support
Interfaces," Ada in Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June
1988, Cambridge University Press, 1988.

Host/OS: Sun

Vendors/Agents: [Cambridge University Press, College of Wales]

Method: Structured experiment
Inputs: The source code for the scenarios, the tool support interface(s) (CAIS, PCTE,

other), Ada compiler and runtime system, and host computer.
Process: 1. Obtain the source code for the scenarios

2. Compile and run the scenario(s)
3. Collect the results.

Outputs: Objective results and subjective conclusions concerning the impact on tool writers
and the cost and behavior of the interface implementation.

9-4

E&V Guidebook, Version 3.0

9.3 COMMAND LANGUAGE INTERPRETER ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of the command language
interpreter shown in Fig. 9.3-1. Requirements for each element in the hierarchy are listed
for addressing certain attributes. Each requirement is augmented by one or more questions
which address the requirement.

[@RM: Command Language Processing 7.2.3.1, (@RM: Anomaly Management 6.4.2,
@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Maturity 6.4.19
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32.
@RM: System Compatibility 6.4.35.
@RM: Visibility 6.4.40)]

Primary References: [E&V Report 1984] "Requirements for Evaluation and Validation of Ada
Programming Support Environments, Version 1.0," 17 October 1984, Appendix B of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright Aeronautical
Laboratories, November 1984, pp. B-39 - B-44, DTIC Number AD A153 609.

[Requirements for E&V 4.5]

Vendors/Agents: [E&V Team]

Command language
Syntax
Programs
Tool/program invoking function
Diagnostic generation function
Non-tabular inputs

Interpreter
Hosts
Interfaces
Aids
Performance

Figure 9.3-1 Command Language Interpreter Hierarchy

9-5

E&V Guidebook, Version 3.0

Method: Questionnaire.
Inputs: Questionnaire, command language interpreter, and doc': nentation.
Process: Answer the questions by using the command language interpreter, reading the

documentation, or asking the vendor of the command language interpreter.
Outputs: Completed questionnaire.

9.4 Ada-EUROPE: META-TOOLS AND TOOL COMPONENTS QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 9
discusses issues associated with meta-tools and tool components (analyzer and editor
generators, user interface support, data access gePerators, modifying tools and extending
toolsets, utility packages, and applications generators).

[@RM: Program Generation 7.1.7.3, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)]

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986, Chapter
9.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

9-6

E&V Guidebook, Version 3.0

9.5 AIM BENCHMARK SUITES

Purpose: AIM Technology has developed several benchmark test suites to measure the
performance of workstations to determire their appropriateness for various tasks or
applications primarily for Unix s3stems. The suites examine workstation performance,
multi-user performance, Unix utilities performance, X Windows performance, and Unix
subsystem performance.

The Suite V Workstation Benchmarks test Unix and OS/2 single user, multi-tasking
workstation environments. The benchmark tools stress the system by increasing the
consumption of resources within an application and measuring the effect. To model user
behavior, the benchmarks behave as a real user. The products load a diverse set of
applications; timing and testing while moving from one application to another at odd
intervals. The Workstation Benchmarks use 40 tests to evaluate system performance under
user-defined application mixes such as: accounting, scientific operations, software
development, spreadsheet, and database management. Functional tests can also be used
to evaluate system performance under user-defined application mixes Functional elements
include: disk, math, floating point, inter-process communication, logic, and memory.

[(@RM: Database Management 7.2.1.1,
@RM: Input/Output Support 7.2.3.2,
@RM: Kernel 7.2.3.3,
@RM: Math/Statistics 7.2.3.4,
@RM: Job Scheduling 7.2.3.8,
@RM: Resource Management 7.2.3.9), @RM: Processing Effectiveness 6.4.23]

The Suite III Multi-user Benchmark for Unix systems measures the multi-user system
performance of multiple systems under a variety of application mixes and resource loads,
compares the multi-user performance of up to 20 single or multiprocessor systems at a
time, predicts the effects of adding users to a system under a given application mix and
resource load, and assesses the multi-user performance of a single system under varying
use conditions. The Multi-user Benchmark uses 31 functional tests to evaluate system
performance under user-defined application mixes, consisting of the following operation
types: accounting, compiling, database management, graphics, scientific operations,
spreadsheet, user interface operations, and word processing.

[(@RM: Text Editing 7.1,1.1,
@RM: Graphics Editing 7.1.1.3.
@(vRM: Pre & Uscr-Defined Forms 7.1.2.3
@RM: Graphics Generation 7.1.5,
(RM: Compilation 7.1.6.7,
@RM: Database Management 7.2.1.1,
(RM: Input/Output Support 7.2.3.2,
(- RM: Math/Statistics 7.2.3.4,
@RM: Job Scheduling 7.2.3.8,
(4RM: Resource Management 7.2.3.9), @RM: Processing Effectiveness 6.4.231

The Unix Utility Benchmark, Milestone, uses actual Unix tools to perform different tasks
repetitively. It is immune to excessive CPU instruction and data caching, and is
functionally representative of real user loads. In simulating different user types, Milestone
invokes standard Unix utilities that are typically performed by the specified user. The user
types are: administrative assistant, calculator/spreadsheet, database user, manager,

9-7

E&V Guidebook, Version 3.0

scientist, software engineer, text processing.

[(@RM: Pre & User-Defined Forms 7.1.2.3,
@RM: Sort/Merge 7.1.4,
@RM: Linking/Loading 7.1.6.13,
@RM: Database Management 7.2.1.1,
@RM: File Management 7.2.1.3,
(6)RM: Electronic Mail 7.2.1.4,
@RM: Command Language Processing 7.2.3.1,
@RM: Input/Output Support 7.2.3.2,
@RM: Kern.; 7.2.3.3,
@RM: Math/Statistics 7.2.3.4,
@RM: Resource Management 7.2.3.9,
@RM: Comparison 7.3.1.1,
@RM: Spelling Checking 7.3.1.2), @RM: Processing Effectiveness 6.4.231

The X Windows Benchmark, Su;te X, provides over 140 specific tests that test performance
in each of the X Operation Categories as well as the Primary X User Environments. The
X Operation Categories are: graphics, including lines, polygons, circles, etc.; text, including
fixed and variable fonts; pixmaps, including icon sized and larger; and windows, including
creating, deleting, and circulating. The Primary X User Environments are: engineering with
CAD/CAM and CAE; desktop publishing; and software development.

[(@RM: Text Editing 7.1.1.1,
@RM: Graphics Editing 7.1.1.3,
@RM: Pre & User-Defined Forms 7.1.2.3,
@RM: Graphics Generation 7.1.5,
@RM: Input/Output Support 7.2.3.2,
(RM: Resource Management 7.2.3.9), @RM: Processing Effectiveness 6.4.231

The Suite II Subsystem Benchmark measures the performance of seven basic hardware
and software subsystem areas: math, floating point, memory, function calls, system calls,
disk, and inter-process communication. It does this while comparing and reporting on the
performance of up to 20 systems.

[(@RM: Input/Output Support 7.2.3.2,
@RM: Kernel 7.2.3.3,
@'RM: Math/Statistics 7.2.3.4,
@RM: Job Scheduling 7.2.3.8,
@RM: Resource Management 7.2.3.9), @RM: Processing Effectiveness 6.4.23]

Finally, the AIM Performance Reports (APR) provide Unix users with a simple method of
assessing the relative performance of Unix systems, from PCs to mainframes. AIM
benchmarks (see Suites II and III and Milestone, above) are run on the target machines
to test system performance. APR subscribers receive regular updates that contain technical
information on the performance of the latest Unix systems. Subscribers can use the reports
to make price/performance comparisons and to select systems for further evaluation.

Primary References: [Roybal 1990] K. Roybal, "AIM Procurement Guide," AIM Technology,
Version 1.0, 1990.

Host/OS: Unix and OS/2

Vendors/Agents: [AIM]

9-8

E&V Guidebook, Version 3.0

Method: Automated test suites.
Inputs: The AIM test suites, operating system, utilities, and host computer.
Process: 1. Obtain the AIM test suite(s).

2. Run the tests.
3. Collect and analyze the results.

Outputs: Report(s) analyzing the strengths and weaknesses of the tested subsystem(s).

9-9

E&V Guidebook, Version 3.0

9.6 TRADE JOURNAL OPERATING SYSTEM SHELL EVALUATIONS

Purpose: Various trade journals have evaluated and compared operating system (OS) shells.
The value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of OS shells, the articles are a good way to quickly
come up to speed on what the issues are. In some cases the articles are a good way to
perform a "first cut" evaluation to narrow the list of products to be evaluated in depth.

[@RM: Text Editing 7.1.1.1, (@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9);

@RM: File Management 7.2.1.3, (@RM: Anomaly Management 6.4.2.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Command Language Processing 7.2.3.1. (@RM: Anomaly Management 6.4.2.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38);

(@RM: Sort/Merge 7.1.4,
@RM: Input/Output Support 7.2.3.2,
@RM: Math/Statistics 7.2.3.4,
@RM: Job Scheduling 7.2.3.8,
@P.M: Resource Management 7.2.3.9,
@RM: Comparison 7.3.1.1), @RM: Completeness 6.4.91

Primary References: [Brown 1990] B. Brown, "Playing the DOS Shell Game," PC Magazine,
vol. 9, no. 11, 12 June 1990, pp. 185-244.

[Marshall 1990] P. Marshall, Product Comparison, "Giving DOS a New Face," InfoWorld,

vol. 12, issue 16, 16 April 1990, pp. 57-77.

Vendors/Agents: [PC Magazine, InfoWorld]

Method: Capabilities checklist(s).
Inputs: Checklists, CS shell(s), and documentation.
Process: Check off capabilities by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed checklist(s).

9-10

E&V Guidebook, Version 3.0

9.7 TRADE JOURNAL OPERATING SYSTEM UTILITY EVALUATIONS

Purpose: Various trade journals have evaluated and compared operating system (OS) utilities.
The value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of OS utilities, the articles are a good way to quickly
come up to speed on what the issues are. In some cases the articles are a good way to
perform a "first cut" evaluation to narrow the list of products to be evaluated in depth.

[@RM: File Management 7.2-1.3, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33);

@RM: Input/Output Support 7.2.3.2, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: System Accessibility 6.4.33.
@RM: System Compatibility 6.4.35);

@RM: Import/Export 7.2.3.6, (@RM: Anomaly Management 6.4.2.
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: System Accessibility 6.4.33.
@RM: System Compatibility 6.4.35):

(d@RM: Emulation 7.3.2.13, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: System Compatibility 6.4.35):

((&iRM: Text Editing 7.1.1.1,
(a RM: Sort/Merge 7.1.4,
@)RM: Compression 7.1.6.16,
@RM: Encryption 7.1.6.18,
@iRM: Math/Statistics 7.2.3.4,

@RM: Job Scheduling 7.2.3.8), @RM: Completeness 6.4.91

9-11

E&V Guidebook, Version 3.0

Primary References: [Lauriston 1990b] R. Lauriston, "Hard Disk Health Insurance," PC World,
vol. 8, no. 7, July 1990, pp. 109-118.

[Goodwin 1990] M. Goodwin, "Disk Trouble? No, Thanks," PC World, vol. 8, no. 7, July
1990, pp. 133-148.

[Walkenbach 1990a] J. Walkenbach, "No-Excuses Backup Software," PC World, vol. 8, no.
7, July 1990, pp. 149-164.

[Mendelson 1990] E. Mendelson, "Disaster Relief: DOS Utilities Save the Day," PC
Magazine, vol. 9, no. 6, 27 March 1990, pp. 97-132.

[Lauriston 1990] R. Lauriston, "Cache Values," PC World, vol. 8, no. 2, February 1990, pp.
130-139.

[Mendelson 1989] E. Mendelson, "Backup Software: For the Moment After," PC Magazine,
vol. 8, no. 8, August 1989, pp. 269-322.

Vendors/Agents: [PC World, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, OS utilities, and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

9-12

E&V Guidebook, Version 3.0

9.8 TRADE JOURNAL EXPERT SYSTEM SHELL EVALUATIONS

Purpose: Various trade journals have evaluated and compared expert system shells. The value
of the articles is not so much the assessment of the specific products (since they quickly
become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of expert system shells, the articles are a good way
to quickly come up to speed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth.

[@RM: Program Generation 7.1.7.3, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Math/Statistics 7.2.3.4, @RM: Completeness 6.4.91

Primary References: [Brody 1989] A. Brody, Product Comparison, "The Experts," InfoWorld,
vol. 11, issue 25, 19 June 1989, pp. 59-75.

Vendors/Agents: [InfoWorld]

Method: Capabilities checklist(s).
Inputs: Checklists, expert system shell(s), and documentation.
Process: Check off capabilities by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed checklist(s) and performance reports.

9-13

E&V Guidebook, Version 3.0

10. REQUIREMENTS/DESIGN SUPPORT ASSESSORS

These assessors measure the suitability and effectiveness of various software definition,

specification, and design tools. This specifically includes assessors of Ada Program Design

Language (PDL) implementations and/or guidelines in the use of Ada as a PDL.

10.1 SEI DESIGN SUPPORT EXPERIMENT

Purpose: Evaluation of the design and code development capabilities of an environment, as
represented in a small project. An experiment was designed to simulate the activities
normally associated with small projects, namely the design, creation, modification, and
testing of a single unit or module. See also the SEI Debugging or Unit Testing
Experiments [7.9 or 8.2].

[@RM: Preliminary Design 7.1.6.4, (@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23.
@RM: Storage Effectiveness 6.4.32);

(iRM: Detailed Design 7.1.6.5. (@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23.
@RM: Storage Effectiveness 6.4.32)]

Primary References: [Weiderman 1987] N.H. Weiderman and A.N. Habermann, "Evaluation
of Ada Environments," Software Engineering Institute, Technical Report CMU/SEI-87-TR-
1, March 1987, Chapter 5, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments 4.13]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment.
Inputs: The "generic" experiment description, an APSE, and host computer.
Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and carry

it out.
Outputs: A filled-in checklist of functional elements present and missing, tables of time and

space data, and subjective judgments based on the experience.

10-1

E&V Guidebook, Version 3.0

10.2 REQUIREMENTS PROTOTYPING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of requirements prototyping by developing a list of
functional capabilities.

[(RM: Requirements Protovping 7.3.2.2, @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 10.2-1) and requirements prototyping documenta-

tion.
Process: Check off capabilities demonstrated by the requirements prototyping system or

discussed in the documentation.
Outputs: A list of capabilities provided by the requirements prototyping system.

Table 10.2-1 Requirements Prototyping Capabilities Checklist

FEATURE FOUND NOTES

Standards Requirements Libraries
Executable Specifications
Fourth Generation Languages or Very High

Level Languages
Reusable Building Blocks and Associated

Tools
Man-Machine Interface Prototyping Capabili-

ties
Applications Generators
Previous Software Version Import Capabilities

10-2

E&V Guidebook, Version 3.0

10.3 SIMULATION AND MODELING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of simulation and modeling uy developing a list of
functional capabilities.

J@RM: Simulation and Modeling 7.3.2.3, @RM: Completeness 6.4.91

Primary References: [ISTAR 1987] Workshop on Future Development Environments,
Information Science and Technology Assessment for Research, Conference on Information
Mission Area (IMA) Productivity, Department of Army Director of Information Systems
for Command, Control, Communications and Computers, 13-15 April 1987, pp 28.

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 10.3-1) and simulation and modeling documenta-

tion.
Process: Check off capabilities demonstrated by the simulation and modeling system or

discussed in the documentation.
Outputs: A list of capabilities provided by the simulation and modeling system.

10-3

E&V Guidebook, Version 3.0

Table 10.3-1 Simulation and Modeling Capabilities Checklist

FEATURE FOUND NOTES

Conceptual Modeling Support
Domain-Specific Knowledge Base
Inferencing Systems
Operational Environment Modeling Support
User Modeling Support
Model Browsers
Game and Risk Models Database
Functional Allocation Methodologies Data-

base
Scaling Rules Database
Constraint Evaluation Tools
Precision Estimators
Computer System Modeling

Interface/Input Support
Graphical
Menus
Tabular
Command

Model Subject
Control Flow
Information Flow
Human/Machine Procedures

Outputs
Response Time Estimates
Throughput Estimates
Resource Utilization Estimates

System Types Supported
Real Time
Distributed
Multiprocessor

Standard Computer System Models Data-

Preprogrammed Models of Common
Distributed System Functions

Underlying Mathematical Theory (e.g.,
Queueing Network Theory)

10-4

E&V Guidebook, Version 3.0

10.4 NADC/SPS CASE TOOLS EVALUATION

Purpose: Development of evaluation criteria and evaluation of selected candidate methods and
tools. The focus of this investigation was Computer Aided Software Engineering (CASE)
tools and methods applied during the early life cycle phases/activities (system and software
requirements and top-level design) and applied to large, time-critical systems. Three
commercially available CASE tools were selected for evaluation, following an initial survey
of more than 100 possibilities. An experiment based on a sample problem (submarine
detection with a sonobouy) was created and carried out using three systems. Evaluation
criteria, detailed questions, and a scoring system were developed and applied in three
areas: method, automation, and vendor support.

[@RM: System Requirements 7.1.6.1, (@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Processing Effectiveness 6.4.23,
@RM: Self-Descriptiveness 6.4.29,
@RM: System Clarity 6.4.34,
@RM: Training 6.4.37);

@RM: Software Requirements 7.1.6.2, (@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Processing Effectiveness 6.4.23,
@RM: Self-Descriptiveness 6.4.29.
@RM: System Clarity 6.4.34,
@RM: Training 6.4.37);

@RM: Preliminary Design 7.1.6.4, (@RM: Augmentability 6.4.4.
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Processing Effectiveness 6.4.23,
@RM: Self-Descriptiveness 6.4.29,
@RM: System Clarity 6.4.34,
@RM: Training 6.4.37)]

Primary References: [Donaldson 1988] C. Donaldson and P.B. Dyson, "Computer-Aided
Systems and Software Engineering Products for Time-Critical Applications Development,"
Software Productivity Solutions (SPS), Inc., April 1988.

[Stuebing 1988] H.G. Stuebing, "Evaluation of Computer Aided Systems/Software
Engineering Products for Time-Critical Naval Systems," Proceedings of the Conference
Methodologies and Tools for Real Time Systems, November 14-15, 1988.

Host/OS: Various Workstations (PC/AT, Apollo, Sun, VAXStation)

Vendors/Agents: [NADC, SPS]

10-5

E&V Guidebook, Version 3.0

Method: Structured Experiment
Inputs: Evaluation criteria and questions, sample problem definition, and candidate

methods and tools
Process: For each candidate method/tool, carry out development of software requirement

specification and top-level design documents. Answer evaluation questions and fill out
scoring sheets.

Outputs: Evaluation reports containing two levels of detail: executive summaries with top-
level scoring and detailed descriptions and analyses with questions, answers, and
individual scores.

10-6

E&V Guidebook, Version 3.0

10.5 TIME-CRITICAL APPLICATIONS SUPPORT CHECKLIST

Purpose: Evaluation of the completeness of time-critical applications support by developing a
list of functional capabilities.

[(@RM: System Requirements 7.1.6.1,
@RM: Software Requirements 7.1.6.2,
@'RM: Preliminary Design 7.1.6.4,
@RM: Detailed Design 7.1.6.5), @RM: Completeness 6.4.91

Primary References:

Vendors/Agents: [E&V Team]

Method: Checklist.
Inputs: Capabilities checklist (see Table 10.5-1) and time-critical applications support

documentation.
Process: Check off capabilities demonstrated by the time-critical applications support or

discussed in the documentation.
Outputs: A list of capabilities provided by the time-critical applications support.

Table 10.5-1 Time-critical Applications Support Checklist

FEATURE FOUND NOTES

Periodic and aperiodic events
Synchronization of sequential and concurrent processes
Execution sequence of components
Timing constraints for events, sequences of events,

processes, and sequences of processes
Precision of a system's response to internal and exter-

nal events
Interrupts and the extent of process context switching
Processing of discrete and time continuous data
Allocation of critical timelines and resource utilizations
Data throughput
Task priority changes due to system mode changes or

failures
Task management (time-slicing, run-to-completion)
Graphical time-line depiction for tasks, showing depen-

dencies and concurrencies
Simulations for the host
Dynamic analysis for the target

10-7

E&V Guidebook, Version 3.0

10.6 STEM/DRAPER REQUIREMENTS/DESIGN TOOLS EVALUATION

Purpose: Evaluation of the capabilities of CASE tools that support requirements analysis and/or
design. The primary goal of this project is to develop test and evaluation procedures and
apply them to CASE tools. Secondary goals are to compile a list of CASE tools, to speed
up technology insertion in the use of CASE tools, and to contribute to the STEM database
[@STSC 1990]. The evaluation procedures developed under this project have emphasized
creation of a hierarchical checklist. The top-level items in the checklist include the
following "selection criteria areas:"

Information Capture
Methodology Support
Model Analysis
Requirements Tracing
Programming Language Support
Data Repository
Documentation
Data Import/Export
Reusability Support
User Interface
Vendor Information
Multi User Environment
Configuration Control
Host Platform
Costs
Other

The cited reference provides second-level checklist items under each of the above selection
criteria areas.

[@RM: Software Requirements 7.1.6.2, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27.
@RM: Self-Descriptiveness 6.4.29,
@RM: Simplicity 6.4.30,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38);

@iRM: Preliminary Design 7.1.6.4, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7.
@RM: Completeness 649,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Operability 6.4.21.
@RM: Power 6.4.22,

10-8

E&V Guidebook, Version 3.0

@RM: Required Configuration 6.4.27,
@RM: Self-Descriptiveness 6.4.29.
@RM: Simplicity 6.4.30,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35.
@RM: Vendor Suppor! 6.4.38);

@'RM: Detailed Design 7.1.6.5, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: Self-Descriptiveness 6.4.29,
@RM: Simplicity 6.4.30,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38)]

Primary References: [Van Buren 1990] J.K. Van Buren, "Evaluation Procedures for
Requirements Analysis and Design CASE Tools," USAF STSC HQ USAF/SC Joint
Software Conference Proceedings, Salt Lake City, 23-26 April 1990 [@STSC 1990].

[Software Tool Evaluation Model (STEM) 4.20]

Vendors/Agents: [STSC, Draper]

Method: Capabilities Checklist
Inputs: Capabilities checklist and CASE tool and its documentation.
Process: Checklist off capabilities df monstrated by testing or discussed in the documenta-

tion.
Outputs: A list of capabilities provided by the tool.

10-9

E&V Guidebook, Version 3.0

10.7 SOFTWARE METHODOLOGY CATALOG

Purpose: "This catalog provides a consolidated reference for methods used over the total
spectrum of software development. A primary objective is to provide a brief overview of
each method, and to give for each method some insight into its underlying assumptions, the
software development activities which it supports, and other characteristics associated with
its use. ... One final objective is to provide a facility for contrasting the various methods
relative to selected attributes."

"... The catalog represents an effort to obtain the most current information available for
each method. To this end, surveys were developed, and responses were solicited from
developers. In writing the catalog the authors have elected to serve as reporters rather
than evaluators. Evaluative statements that appear in the catalog are based upon survey
responses."

"The use of the term method in this catalog needs further extianation. Both tools and
approaches exist over wide spectra. Within these spectra, making a clear distinction
between a sophisticated tool and a method on the one hand, or between a method and a
prescriptive approach on the other, is difficult. Thus, the authors' use of the term method
in this catalog has been widened to include schema that could be termed tools or
approaches."

Although the authors state that the catalog covers "the total spectrum of software
development," most of the methods described within deal, primarily, with the front end
activities of software development from requirements engineering through detailed design.
Each method is presented in a common format containing: background, description,
technical aspects, project control and communication, ease of use, acquisition factors, and
references. The criteria that are used as a basis for method comparison are: coverage and
prescriptiveness, robustness, expressiveness, analyzability and stability, correctness and
effectiveness, manageability, productivity, and ease of adoption.

[@'RM: Software Requirements 7.1.6.2, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Application Independence 6.4.3,
@RM: Capacity 6.4.6.
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 64.28,
@RM: Software Production Vehicle(s) 64.31,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38,
@RM: Visibility 6.4.40);

6'RM: Preliminary Design 7.1.64, (@RM: Accuracy 6.4.1.
@RM: Anomaly Management 6.4.2,

10-10

E&V Guidebook, Version 3.0

@RM: Application Independence 6.4.3,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Software Production Vehicle(s) 5.4.31,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38,
@RM: Visibility 6.4.40);

@RM: Detailed Design 7.1.6.5, (@RM: Accuracy 6.4.1,
@RM: Anomaly Management 6.4.2,
@RM: Application Independence 6.4.3,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: Software Production Vehicle(s) 6.4.31,
@RM: Traceability 6.4.36,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38,
@RM: Visibility 6.4.40)]

Primary References: [Von Gerichten 1989] L. Von Gerichten, et al., "Software Methodology
Catalog," CECOM Center for Software Engineering, US Army Communications-
Electronics Command, C01-091JB-0001-01, March 1989, DTIC Number AD A210 548.

Vendors/Agents: [DTIC, CECOM]

Method: Questionnaire.
Inputs: Questionnaire (from catalog) and method documentation.
Process: Answer questions based on capabilities demonstrated by the method (tool),

reading the documentation, or asking the vendor.
Outputs: Completed questionnaire.

10-11

E&V Guidebook, Version 3.0

10.8 CECOM: PROCEDURES FOR COMPUTER-AIDED SOFTWARE ENGINEERING
TOOL ASSESSMENT

Purpose: "The purpose of this study is to develop procedures for the assessment of computer-
aided software engineering (CASE) tools for tactical embedded systems. ... Due to the
large number of CASE tools that are available currently, it is imperative for an
organization about to purchase a tool to gain an understanding of the currently available
tools and assess their attributes. Understanding what a tool does and comparing it to
similar tools are difficult tasks, some of the reasons being:

* the diversity of functionality that exists among the tools,

* vendor claims for specific tools and the performance of these tools in actual practice
are often dramatically different.

Hence, it is very important to develop criteria and procedures for the assessment of CASE
tools that address parts as well as the whole software development life cycle."

Although there is some discussion of tool support for testing and maintenance, the reports
focus, primarily, on the front end of the software life cycle from requirements engineering
through code generation. The first report gives the evaluation criteria and assessment
procedures to be used for CASE tools. The second report uses the criteria and procedures
to assess eleven tools currently available.

{@RM: Anomaly Management 6.4.2;
@RM: Documentation Quality 6.4.13:
@RM: Functional Scope 6.4.15;
@RM: Operability 6.4.21;
@RM: Processing Effectiveness 6.4.23;
@RM: Proprietary Rights 6.4.24;
@RM: Software Production Vehicle(s) 6.4.31;
@RM: S.stem Compatibility 6.4.35;
@RM: Training 6.4.37;
@RM: Vendor Support 6.4.38;
(@RM: Text Editing 7.1.1.1,
@RM: Graphics Editing 7.1.1.3), @RM: Power 6.4.22,
@RM: MIL-STD Format 7.1.2.1, (@RM: Commonality 6.4.7,

@RM: System Compatibility 6.4.35);
@RM: Software Requirements 7.1.6.2, (@RM: Anomaly Management 6.4.2,

@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: System Accessibility 6.4.33,
@RM: Virtuality 6.4.39,
@RM: Visibility 6.4.40);

@RM: Preliminary Design 7.1.6.4. (@RM: Anomaly Management 6.4.2.
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8.
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33.
@RM: Virtuality 6.4.39.
@RM: Visibility 6.4.40);

10-12

E&V Guidebook, Version 3.0

@RM: Detailed Design 7.1.6.5, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Communication Effectiveness 6.4.8,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33,
@RM: Virtuality 6.4.39.
@RM: Visibility 6.4.40);

@RM: Program Generation 7.1.7.3, (@RM: Completeness 6.4.9,
@RM: Processing Effectiveness 6.4.23,
@RM: Traceability 6.4.36,
@RM: Visibility 6.4.40);

@RM: Database Management 7.2.1.1, (@RM: Completeness 6.4.9,
@RM: Distributedness 6.4.12,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35);

(@RM: Requirements Reconstruction 7.1.7.2,
@RM: Dccompilation 7.1.7.5,
@RM: Disassembling 7.1.7.6,
@RM: Source Code Restructuring 7.1.7.8,
@RM: Design Reconstruction 7.1.7.9,
@RM: Import/Export 7.2.3.6,
@RM: Access Control 7.2.3.7,
@RM: Traceability Analysis 7.3.1.6,
@RM: Completeness Checking 7.3.1.12,
@RM: Consistency Checking 7.3.1.13,
@RM: Reachability Analysis 7.3.1.16,
@RM: Structure Checking 7.3.1.26,
@RM: Random Test Generation 7.3.1.32,
@RM: Requirements Prototyping 7.3.2.2,
@RM: Simulation and Modeling 7.3.2.3,
@RM: Design Prototyping 7.3.2.4,
@RM: Coverage/Frequency Analysis 7.3.2.8,
@RM: Real-Time Analysis 7.3.2.17), @RM: Completeness 6.4.9:

(@RM: Cost Estimation 7.2.2.1,
@RM: Scheduling 7.2.2.3,
@RM: Work Breakdown Structure 7.2.2.4,
@RM: Resource Estimation 7.2.2.5,
@RM: Tracking 7.2.2.6,
@RM: Configuration Management 7.2.2.7), @RM: System Accessibility 6.4.33]

Primary References: [CECOM 1989] "Procedures For Computer-Aided Software Engineering
Tool Assessment," CECOM Center for Software Engineering, US Army Communications-
Electronics Command, ?, April 1989, DTIC Number pending.

[CECOM 1989a] "Evaluation Of Existing CASE Tools For Tactical Embedded Systems,"
CECOM Center for Software Engineering, US Army Communications-Electronics
Command, ?, April 1989, DTIC Number pending.

Vendors/Agents: [CECOM]

Method: Questionnaire.
Inputs: Questionnaire (from first report), tool, and tool documentation.
Process: Answer questions based on capabilities demonstrated by the tool, reading the

documentation, or asking the vendor.
Outputs: Completed questionnaire.

10-13

E&V Guidebook, Version 3.0

10.9 IEEE: AN EVALUATION OF CASE TOOLS

Purpose: "This paper presents the results of a study to select a workstation based computer
aided software engineering (CASE) tool for a large software development concern. ... The
paper presents the functions typically performed by CASE tools ... The paper then
describes the approach used to evaluate and compare these tools. This approach involved
development of a detailed product requirement list, a ranking of the importance of the
requirements by potential users of the tool, and a relative rating (of) the most comprehen-
sive of the available products according to the degree to which they satisfy the require-
ments. The user requirement rankings and the product ratings are then used to select the
best available product."

[@RM: Software Requirements 7.1.6.2, (@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11,
@RM: Operability 6.4.21,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Preliminary Design 7.1.6.4, (@RM: Commonality 6.4.7.
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11,
@RM: Operability 6.4.21,
@RM Required Configuration 6.4.27,
@RIh Vendor Support 6.4.38);

@RM: Detailed Design 7.1.6.5, (@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11.
@RM: Operability 6.4.21,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38)1

Primary References: [Troy 1987] D.A. Troy, "An Evaluation of CASE Tools," Proceedings of
the 1987 International Computer Software and Applications Conference, IEEE Computer
Society, pp. 124-130, 1987.

Vendors/Agents: [IEEE Computer]

Method: Checklist.
Inputs: Checklist, tool, and tool documentation.
Process: Rate features demonstrated by the tool, or described by tool documentation or

discussions with vendor.
Outputs: Completed checklist.

10-14

E&V Guidebook, Version 3.0

10.10 ACM SIGSOFT: SELECTION CRITERIA FOR ANALYSIS AND DESIGN CASE
TOOLS

Purpose: "Computer Aided Software Engineering (CASE) has been receiving increasing
attention because of its potential for substantial productivity improvement of software
development. Selecting CASE tools best suited to organizations needs can be a challenge
because of wide variations among CASE features, completeness, terminology, and usage
characteristics. This paper presents specific performance criteria of CASE tools and ranks
them as required versus "nice to have." It is based on an in depth investigation of several
packages."

[@RM: Software Requirements 7.1.6.2 (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Traceability 6.4.36);

@RM: Preliminary Design 7.1.6.4, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27.
@RM: System Accessibility 6.4.33.
@RM: System Compatibility 6.4.35,
@RM: Traceability 6.4.36):

@RM: Detailed Design 7.1.6.5, (@RM- Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35.
@RM: Traceability 6.4.36)]

Primary References: [Baram 1989] G. Baram and G. Steinberg, "Selection Criteria for Analysis
and Design CASE Tools," Software Engineering Notes, ACM SIGSoft, Vol. 14, No. 6, pp.
73-80, October 1989.

Vendors/Agents: [ACM]

Method: Checklist.
Inputs: Checklist, tool, and tool documentation.
Process: Rate features demonstrated by the tool, or described by tool documentation or

discussions with vendor.
Outputs: Completed checklist.

10-15

E&V Guidebook, Version 3.0

10.11 TRADE JOURNAL REQUIREMENTS AND DESIGN TOOL EVALUATIONS

Purpose: Various trade journals have evaluated and compared requirements and design tools.
The value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of requirements and design tools, the articles are a
good way to quickly come up to speed oat what the issues are. In some cases the articles
are a good way to perform a "first cut" evaluation to narrow the list of products to be
evaluated in depth.

[@RM: Software Requirements 7.1.6.2, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Distributedness 6.4.12,
@RM: Functional Overlap 6.4.14,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33
@RM: System Compatibility 6.4.35.
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38);

@RM: Preliminary Design 7.1.6.4, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9
@RM: Distributedness 6.4.12.
@RM: Functional Overlap 6.4.14,
@RM: Operability 64,21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33
@RM: System Compatibility 6.4.35,
@RM: Training 6.4.37
@RM: Vendor Support 6.4.38);

((-'RM: Detailed Design 7.1,6.5, (@RM: Anomaly Management 6.4.2
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Distributedness 6.4.12.
@RM: Functional Overlap 6.4.14
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Training 6.4.37,
@RM: Vendor Support 6.4.38);

(@'RM: Design Generation 7.1.7.1, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Power 6.4.22.
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

(a RM: Program Generation 7.1.7.3, (@RM: Anomaly Management 6.4.2,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9.
@RM: Power 6.4,22.
@RM: System Accessibility 6.4.33.
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38);

10-16

E&V Guidebook, Version 3.0

(@RM: Traceability Analysis 7.3.1.6,
@RM: Completeness Checking 7.3.1.12,
@RM: Consistency Checking 7.3.1.13,
@RM: Syntax & Semantics Check 7.3.1.15,
@RM: Requirements Simulation 7.3.2.1.
@RM: Requirements Prototyping 7.3.2.2.
@RM: Simulation and Modeling 7.3.2.3.
@RM: Design Prototyping 7.3.2.4), @RM: Completeness 6.4.9]

Primary References: [Sullivan-Trainor 1990] M.L. Sullivan-Trainor, Product Spotlight, "Buyer's
Scorecard," Computer World, vol. 24, no. 15, 9 April 1990, pp. 68-69.

[Fersko-Weiss 1990] H. Fersko-Weiss, "CASE Tools for Designing Your Applications," PC
Magazine, vol. 9, no. 2, 30 January 1990, pp. 213-251.

[McClure 1989] C. McClure, "The CASE Experience," BYTE, vol. 14, no. 4, April 1989,

pp. 235-245.

Vendors/Agents: [ComputerWorld, PC Magazine, BYTE]

Method: Capabilities checklist(s).
Inputs: Checklists, requirements and design (CASE) tool(s), and documentation.
Process: Check off capabilities by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed checklist(s).

10-17

E&V Guidebook, Version 3.0

it. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS

These assessors examine the performance, usability, and completeness of the APSE or

APSE component functionality related to controlling the contents of software systems. This

includes monitoring the status, preserving the integrity of released and developing versions, and

controlling the effects of changes throughout the lifetime of the software system.

11.1 CONFIGURATION MANAGEMENT CAPABILITIES CHECKLIST
Purpose: Evaluation of the completeness of configuration management by developing a list of

functional capabilities.

[@RM: Configuration Management 7.2.2.7, @RM: Completeness 6.4.91

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist.
Inputs: Capabilities checklist (see Table 11.1-1) and configuration management documenta-

tion.
Process: Check off capabilities demonstrated by the configuration manager or discussed in

the documentation.
Outputs: A list of capabilities provided by the configuration manager.

11-1

E&V Guidebook, Version 3.0

Table 11.1-1 Configuration Management Capabilities Checklist

FEATURE FOUND NOTES

Version Management
Archive
Protect
Integrity Checking
Support for Review Process
Backup and Recovery Support
Support for (Backward) Delta Storage

Method
Compression
Encryption
Support for Export/Import of Version

Control Data
Programmatic Interface

Revision Management
Support for Multiple Development Paths

(Branching/Variations)
Support for Reconciliation/Merging

Text and Binary Support

Usage Administration/Access Control/Security

Audit Support

Configuration Library
Create
Delete
Verify

Library Elements
Create
Delete
Fetch/Check Out
Read-Only Check Out
Reserve/Lock
Unreserve/Unlock
Replace/Check In
Differences

Element Classes
Create
Delete
Insert Element
Remove Element

11-2

E&V Guidebook, Version 3.0

Table 11.1-1 Configuration Management Capabilities Checklist (Continued)

FEATURE FOUND NOTES

Reports/Listings
Elements
Reservations/Check Outs
History
Annotation
Completeness____________________

Level Control

Test Control
Procedures
Data
Results
FailureReporting__________________

Integration with Development Environment

Activity Tracking __________________

User-Configurable Automated Software Builds

Component Dependency Tracking_____________

Support for Expandable Keywords_____________

Operating System File Name Independence _____________

Networking Capabilities_____________

Search Capabilities

11-3

E&V Guidebook, Version 3.0

11.2 SEI CONFIGURATION MANAGEMENT EXPERIMENT

Purpose: Evaluation of the configuration management and version control capabilities of an
environment. An experiment was designed to simulate the system integration and testing
phase of the life cycle by having three separate development lines of descent from a single
baseline.

[@RM: Configuration Management 7.2.2.7. (@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23)1

Primary References: [Weiderman 1987] N.H. Weiderman and A.N. Habermann, "Evaluation
of Ada Environments," Software Engineering Institute, Technical Report CMU/SEI-87-TR-
1, March 1987, Chapter 3, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments 4.13]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment.
Inputs: The "generic" experiment description, an APSE, and host computer.
Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and carry

it out.
Outputs: A filled-in checklist showing functional elements present and missing, a table of

elapsed-time values for certain specific operations, and subjective judgments based on
the experience.

11-4

E&V Guidebook, Version 3.0

11.3 CONFIGURATION MANAGEMENT ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of configuration management shown
in Fig. 11.3-1. Requirements for each element in the hierarchy are listed for certain
attributes. Each requirement is augmented by one or more questions which address the
requirement.

[@RM: Configuration Management 7.2.2.7, (@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Consistency 6.4.10,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Generality 6.4.16,
@RM: Granularity 6.4.17,
@RM: Maturity 6.4.19,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Rehostability 6.4.26,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35,
@RM: Visibility 6.4.40)]

Primary References: [E&V Report 1984] "Requirements for Evaluation and Validation of Ada
Programming Support Environments, Version 1.0," 17 October 1984, Appendix B of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright Aeronautical
Laboratories, November 1984, pp. B-86 - B-91, DTIC Number AD A153 609.

[Requirements for E&V 4.5]

Vendors/Agents: [E&V Team]

Identification
Attribute management
Version management
Variation management
Relationship management

Configuration Control
Workspace partitioning
Access control
Baseline management
Protection

Status Accounting and Reporting
History reporting
Configuration reporting

Figure 11.3-1 Configuration Management Hierarchy

11-5

E&V Guidebook, Version 3.0

Method: Questionnaire.
Inputs: Questionnaire and configuration management documentation.
Process: Answer questions based on documentation, using the configuration manager, or

asking the vendor.
Outputs: Completed questionnaire.

11.4 Ada-EUROPE: PRODUCT MANAGEMENT QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an ervironment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion s ructure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 16
discusses issues associated with project and product management (integration with a
database, estimation planning and monitoring tools, quality management and configuration
management, and social and legal aspects).

l@RM: Configuration Management 7.2.2.7, @RM: Completeness 6.4.9]

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Camtridge University Press, 1986, Chapter
16.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

11-6

E&V Guidebook, Version 3.0

12. DISTRIBUTED SYSTEMS DEVELOPMENT AND

RUNTIME SUPPORT ASSESSORS

These assessors examine the ability of the APSE or APSE components to support software

development for distributed processing systems, and to provide runtime support for distributed

processing systems.

12-1

E&V Guidebook, Version 3.0

12.1 PERFORMANCE OF PARALLEL Ada

Purpose: Evaluation of run-time performance of multiprocessor systems. The two references
cited below appear in the PIWG special issue of Ada Letters [@PIWG 1990]. The first
reference, by Clapp and Mudge, is a general discussion of parallel and distributed systems
and the problem of developing benchmark tests to measure their performance. The
authors define parallel systems as "those in which program units are assigned processors
at runtime" and distributed systems as "those in which program units are assigned
processors at or before compile time."

The second reference, by Goforth, Collard, and Marquardt of NASA Ames Research
Center, describes an example of the development and execution of benchmark tests applied
to a specific parallel Ada system. The chosen Ada application was based on the
NASA/NBS Standard Reference Model for Telerobot Control System Architecture
[@Albus 1986]. Experiments were run on a Sequent Balance 8000 shared-memory
multiprocessor computer. The number of processors was varied from one to 16. The
reference includes plots of experimental results and a discussion of benchmarking
difficulties unique to parallel systems.

[(@RM: Compilation 7.1.6.7,
Ca RM: Runtime Environment 7.2.3.5), @RM: Processing Effectiveness 6.4.23]

Primary References: [Clapp 1990] R.M. Clapp and T. Mudge, "Parallel and Distributed Issues,"
pp. 33-37 of Ada Letters, Special Edition from SIGAda, the ACM Special Interest Group
on Ada Performance Issues Working Group, Vol. X, Number 3, Winter 1990. [@PIWG
1990]

[Goforth 1990] A. Goforth, P. Collard, and M. Marquardt, "Performance Measurement of
Parallel Ada: An Application Based Approach," pp. 38-58 of Ada Letters, Special Edition
from SIGAda, the ACM Special Interest Group on Ada Performance Issues Working
Group, Vol. X, -umber 3, Winter 1990. [@PIWG 1990]

[Ada Performance Issues (PIWG Special Edition) 4.19]

Vendors/Agents: [NASA/Ames]

Method: Test suite.
Inputs: Source code, Ada compiler and runtime system, and host (and target) computer.
Process:

1. Obtain (or build similar) benchmark tests.
2. Compile and run tests.

Outputs: Reports on the outcome of each test run.

12-2

E&V Guidebook, Version 3.0

13. DISTRIBUTED APSE ASSESSORS

These assessors examine the ability of two or more distributed APSEs to communicate in

cooperative ways in supporting the development of mission critical software at diverse

geographical locations.

13.1 DISTRIBUTED APSE QUESTIONNAIRE

Purpose: Evaluation of the APSE's ability to be used in a distributed environment.

[@RM: Whole APSE Issues 3, (@RM: Anomaly Management 6.4.2
@RM: Commonality 6.4.7.
@RM: Communication Effectiveness 6.4.8,
@RM: Consistency 6.4.10,
@RM: Distributedness 6.4.12,
@RM: Functional Overlap 6.4.14,
@RM: Operability 6.4.21,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35);

@RM: Performance Monitoring 7.2.1.10, @RM: Completeness 6.4.9:
@RM: Tracking 7.2.2.6, @RM: Distributedness 6.4.12]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 13.1-1) and APSE documentation.
Process: Answer questions based on reading the documentation, using the APSE, or asking

the vendor.
Outputs: Completed questionnaire.

13-1

E&V Guidebook, Version 3.0

Architecture
Type of Distribution

What is distributed on the APSE: processing resources, data, or both?

Heterogenous/lomogenous
Does the APSE support a heterogenous hardware configuration or is it restricted to implementation on a homogenous
hardware configuration?

Is there special hardware required for its implementation on a heterogenous configuration?
Are there special software communication protocols that are required for implementation on a heterogenous
configuration?

Node Transparency
Is the same toolset available on all nodes in the APSE?

If so, how is the commonality defined (e.g., common user interface, common functionality, and support by a
common vendor)?

If not:
Is the user-interface and functionality the same across all nodes?

If so, is the definition tailorable?
If not, is this due to the APSE using its distributed nature to partition one type of user from another
(e.g., designers on workstations and coders on minis)?

Does the vendor clearly specify the APSE functionality of each node and the expected target user?
Is the tool variance due to the particular operating system which a node supports?

Are all APSE data available to all nodes and tools?
Can the user access and use the APSE from any node without retraining or using a different set of commands?

Server Node
If there is a server node, how is it configured differently to handle the additional functions it performs?

Fault Tolerance, Isolation, and Recovery (Anomaly Management)
If a node goes down, are the functions and/or data at that node unavailable to the rest of the network until it comes back on
line or are the functions and/or data duplicated on another node?

If duplicated, how current are they?

Performance Monitor
If a performance monitor is provided, can it balance the load on the nodes to maintain a certain performance level? If so:

Is the balancing automatically performed or is human interaction required?
If automatic, can it be delayed or prevented by human interaction? If so, how?

What method does it use for balancing and when is the balancing done?
Does the method support load-balancing across both homogenous and heterogenous implementations?
What are its limitations?

Is the balancing function non-intrusive as far as the user is concerned?
If not. how is the user affected during its execution?

Security
For each of the four levels (individual tool level, node level, whole APSE level, and underlying operating system level), do the
discretionary acces, control features of the distributed APSE permit it to be certified as a Trusted Computer System
Commercial Product?

At what division (A, B. or C) and at what class (e.g., Cl or C2) within the division as defined in the DoD Trusted
Computer System Evaluation Criteria (also known as the Orange Book [@DoD 1983a]) is it certified?

Figure 13.1-1 Distributed APSE Questionnaire

13-2

E&V Guidebook, Version 3.0

Interprocessor DistributioniCommunicatlon
Are facilities provided to allow a process to be distributed? If so:

Does the scheme support both homogenous and heterogenous interprocessor distribution?
What is the performance cost?

If the cost is high. can the function be prevented or modified?
What are the consequences of preventing or modifying it?

W!.ich APSE components use interprocessor distribution?

Is the function required by the components?
If so, does the function require the availability of specific nodes or will any pair of nodes suffice?
If not, what are the intended benefits of interprocessor distribution?

Does interprocessor distribution understand, interface with, and support computer security?
If so, how is the security implemented?

If not:
What aspects of the function would be concerned with computer security?

How does it affect the usability of the APSE?

What obstructions to security does the vendor perceive?

Are there plans for the function to include computer security in the future?
What Operating System functions are required to support interprocessor distribution?

Can these functions be supplied by other software?
If so, is this achievable by the user or does it require the vendor?

If the vendor has to do it, is there an extra charge or is it covered under the annual maintenance fees:
What deadlock prevention, race detection, etc. schemes are supported by interprocessor distribution?
What is the scheduling algorithm used by interprocessor distribution?
What communication software and hardware is required for interprocessor distribution?

What protocols are used by this function?

Do the protocols support standard definitions (e.g., TCP/IP, Ethernet, and Mil-Std-1553)?
Can the protocols be user-defined?
Can one standard protocol be switched with another?

If so, can the switch be performed by the user or only by the vendor?
If it can only be done by the vendor, is there an extra charge for this or is it covered under the annual
maintenance fees?

If more than one protocol is used. is there a clear, structure level definition for the protocols (e.g.. TCP/IP for all
system level communiques and Ethernet for all node level communiques)?
Do the user's manuals explicitly state how, where, and when these protocols are used?
Does the APSE provide all the software and hardware necessary to support the required protocols?

Project Management
Do the project management functions reside in one central location, performing data collection across the network? If so:

Is there a subset of the project management toolset which resides on each node to perform the collection and transferral
of information from that node to the central location?
What software and/or hardware is required to support the communication of the distributed functionality?

What is the protocol (or method) which is used by the toolset to communicate with separate functions or locations within
itself?
Is the project management data collection performed across all nodes automatically or does it require human
interaction?

Does the project management function require all nodes in the APSE to be active in order for it to work?
If not, what happens when a node goes down?

Can users dump or load information to or from the project management toolset from any node?
If so, can it be done in batch mode or does it require interactive assistance from the user?

Can other tools (e.g., spreadsheets) access/load information to or from the project management toolset?
If so, can this be done in batch mode or does it require interactive assistance from the user?

Figure 13.1-1 Distributed APSE Questionnaire (Continued)

13-3

E&V Guidebook, Version 3.0

14. "WHOLE APSE" ASSESSORS

These assessors examine or measure the overall quality or performance of an APSE

considered as a whole rather than as a collection of individual parts individually assessed. A

specific whole-APSE assessor may be designed to achieve a limited objective. An example of

a limited objective is: evaluate the quality of an APSE in supporting a team of software

developers performing a specific life cycle phase or activity such as preliminary design or

integration testing. The results of such an evaluation could then become one ingredient of an

integrated whole-APSE assessment (as described in Section 3.3), which has a broad objective.

14.1 APSE CHARACTERIZATION

Purpose: The purpose of this form is to provide an overview or summary of the capabilities and
features of an APSE. This form can be used as an initial information gathering device to
begin the process of whole-APSE assessment. This information would then be supplement-
ed by results of detailed evaluations or examinations of attributes that are of specific
interest to the potential buyer or user of an APSE.

[0-1RM: Whole APSE Issues 3, (@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9.
@RM: Cost 6.4.11.
@RM: Maturity 6.419,
@RM: Operability 6.421,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38)1

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Blank APSE characterization form (see Fig. 14.1-1) and APSE documentation.
Process: 1. Complete the APSE characterization form

2. Select APSEs for further investigation based on information gathered from
step 1.

Outputs: Completed APSE characterization form.

14-1

E&V Guidebook, Version 3.0

Name/Acronym:

Vendor:

Address:

Phone Number:

Cost ($, no charge, not available/applicable):
Purchase Seminars
Maintenance In-house Classes
Documentation Educational Videos
On-Line Help On-Line Tutorials
Hot-Line Support

Problem Reporting/Resolution Procedures:

Frequency of Updates:

Usage Limitations (License Restrictions):

Host/Target(s) - Required Configurations:

Peripherals Supported:

Languages Supported & Interoperability Features:

Summary of Features:

Figure 14.1-1 APSE Characterization Form

14-2

E&V Guidebook, Version 3.0

Life Cycle Support - Capabilities/Major Activity:

Methodology Support:

Management Support:

Application-Specific Capabilities:

Documentation Support (editors, word processors, document generators, desktop
publishing):

File/Database/Program Library Management (hierarchical, relational):

Access Control-Level of Granularity:

Integration Mechanism (standard file structures, database, standard intertool interfaces):

User Interface (command language, menus, icons)-Flexibility vs. Consistency:

Extensibility:

Support for Distributed Development:

Capacity (number of users, size of project):

Figure 14.1-1 APSE Characterization Form (Continued)

14-3

E&V Guidebook, Version 3.0

Typical Usage Scenarios (expertise of users, roles):

Developer:

Production Process/Vehicles:

Date First Released:

Previous Use:

References (documentation, evaluation results, case histories):

Figure 14.1-1 APSE Characterization Form (Continued)

14-4

E&V Guidebook, Version 3.0

14.2 Ada-EUROPE Ada ENVIRONMENT QUESTIONNAIRES

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided.

[@RM: Whole APSE Issues 3, (@RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6,
@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Proprietary Rights 6.4.24,
@RM: Required Configuration 6.4.27,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35.
@RM: Training 6.4.37)

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaires.
Inputs: Questionnaires (see Table 14.2-1), APSE, and APSE documentation.
Process: Answer the questions by using the APSE, reading the documentation, or asking

the vendor of the APSE.
Outputs: Completed questionnaires.

14-5

E&V Guidebook, Version 3.0

Table 14.2-1 Ada-Europe Environment Questionnaires

ATTRIBUTE RELEVANT SECTION(S) FROM LYONS' BOOK

Augmentability 7.2, 7.4, 8., 9.
Capacity 18.1
Commonality 8.
Completeness 4., 5., 7.1, 7.3, 9., 13.-17.
Operability 10.-12., 18.10-18.12
Power 10.3-10.6
Processing Effectiveness 18.2-18.19
Proprietary Rights 19.
Required Configuration 2., 3., 18.2, 18.3
System Accessibility 6.
System Compatibility 8.
Training 10.2

14-6

E&V Guidebook, Version 3.0

14.3 CROSS-DEVELOPMENT SYSTEM SUPPORT QUESTIONNAIRE

Purpose: Evaluation of the APSE's ability to support the development of an application on a
host computer for implementation on a different target computer, where the target
computer is usually incapable of compiling, linking, and debugging software.

((@RM: Whole APSE Issues 3,
@RM: Assembling 7.1.6.6,
@RM: Compilation 7.1.6.7,
@RM: Linking/Loading 7.1.6.13,
@RM: Simulation and Modeling 7.3.2.3,
@RM: Debugging 7.3.2.5,
@RM: Emulation 7.3.2.13,
@RM: Timing Analysis 7.3.2.14), @RM: Completeness 6.4.91

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 14.3-1) and APSE documentation.
Process: Answer questions based on documentation, using the tools, or asking the vendor.
Outputs: Completed questionnaire.

Transformation
Are there target-optimizing cross-assemblers?
Does the front end support multiple code generators?
What language features are supported by the code generator?

Where are the pragmas defined?
Are they all defined and understood by the front end?

- Are they all defined in the front end, but some are understood in the front end and some are understood in the back
end?

Does it provide the same pragma support across all code generators?
Are there conditional compilation capabilities?

What is the extent of the target features which are supported:
1750A (timer a, timer b, extended memory, etc.)

- CISC (whatever particular features are identified by the chip)

RISC (whatever particular features are identified by the chip)

Is there an intelligent, modifiable linker?

Analysis
Is there a host-based target emulator, simulator, and symbolic debugger?
Is there a facility for supporting interoperability (communications paths) between simulated target processors for multi-target

debugging?
Does the host development system have visibility into actual target processor hardware during execution? If so:

- Is such visibility in terms of original source code names?
Is such visibility extendable into multiple targets?

Is there a host-based static target timing analysis capability?

Figure 14.3-1 Cross Development System Support Questionnaire

14-7

E&V Guidebook, Version 3.0

14.4 APSE CUSTOMIZATION QUESTIONNAIRE

Purpose: Evaluation of the APSE's ability to be customized for a particular host and target
environment, methodology, or application domain.

f@RM: Whole APSE Issues 3, (@RM: Application Independence 6.4.3,
@RM: Augmentahility 6.4.4,
@RM: Commonality 6.4.7,
@RM: Distributednes 6.4.12,
@RM: Generality 6.4.16,
@RM: Modularity 6.4.20,
@RM: Operability 6.4.21,
@RM: Rehostability 6.4.26,
@RM: Required Configuration 6.4.27,
@RM: Retargetability 6.4.28,
@RM: System Compatibility 6.4.35);

@RM: Runtime Environment 7.2.3.5, (@RM: Augmentability 6.4.4,
@RM: Modularity 6.4.20)]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire.
Inputs: Questionnaire (see Fig. 14.4-1) and APSE documentation.
Process: Answer questions based on documentation, using the tools, or asking the vendor.
Outputs: Completed questionnaire.

14-8

E&V Guidebook, Version 3.0

.Methodology

Can the user tailor the methodology supported to fit his own needs, such as for rapid prototyping or partial life cycle
completion?

Can the user define his own methodology?

Automation
Is there development automation present in the APSE?
If so, can it be modified to reflect:

- different project management organization?
- different life cycle definition (standard or user-defined)?
- different document standards generation?
- different project-specific configuration management?

Documentation
Is there documentation support for

user-defined document formats?
- customer-defined document formats?

Can the configuration management for documentation be altered?
Does the APSE support the planning. design, generation, baseline, and maintenance of documents?
Is the information created by the APSE directly importable into the documents?
Can information from one document be transferred to another?
Are changes to the system automatically reflected in the system documentation?
Does the APSE support merged text and graphics documentation?
Is the documentation resident in one database or is it derived from multiple databases?
Is the documentation exportable to another APSE or another database?

User Role Change
Can the APSE be modified to support a user in:

- a differmat skill level?
- a different job assignment?

Communication
What communication protocols are supported by the APSE?

- Can they be modified?
Can they be user-defined?
Is special hardware required to support this communication?

Distribution
Can the APSE go from a single host to support multiple homogenous hosts? Heterogenous hosts?
Can the APSE go from an homogenous to an heterogenous environment and vice versa?

Host Dependencies
Can the APSE be modified for use on another h -st?
Is the APSE built on top of a portability interface implementation such as the CAIS?

Target Dependencies
Does the APSE support one target?

- Can it be modified?
- Can other targets be supported?

Can multiple targets be supported at one time or only one target'
Does the APSE support real-time embedded or non real-time, embedded targets only?

Runlime Support System
Can the RTS be modified?
Are there standard modifications (versions) provided?
Does it have a modular construction?
Is the design documentation for it provided?

- Is it easily understood?
Is the associated toolset (linker, loader, compiler) modifiable to support the modifications of the RTS?
Is the RTS source code provided?
Does the RTS support multiple targets?

Figure 14.4-1 APSE Customization Questionnaire

14-9

E&V Guidebook, Version 3.0

14.5 Ada-EUROPE: PROGRAM INTERACTION QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 8
discusses issues associated with interaction between programs (program invocation,
program communication, and kernel facilities for debugging).

[@RM: Whole APSE Issues 3, (@RM: Augmentability 6.4.4,
@RM: Commonality 6.4.7,
@RM: System Compatibility 6.4.35)]

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986, Chapter
8.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaire.
Innuts: Questionnaire, APSE, and APSE documentation.
Process: Answer the questions by using the APSE, reading the documentation, or asking

the vendor of the APSE.
Outputs: Completed questionnaire.

14-10

E&V Guidebook, Version 3.0

15. INFORMATION MANAGEMENT SUPPORT ASSESSORS

These assessors examine the performance, usability, and completeness of the APSE or

APSE component functionality related to controlling the information flow during the

development of a software system. This includes the organization, accession, modification,

dissemination, and processing of any associated information.

15.1 FILE MANAGEMENT CHECKLIST

Furpose: Evaluation of the completeness and power of file management by developing a list
of functional capabilities.

[@RM: File Management 7.2.1.3, (@RM: Completeness 6.4.9.
@RM: Power 6.4.22)]

Primary References: [Peterson 1985] J.L. Peterson and A. Silberschatz, "Operating System
Concepts," 2nd edition, Addison-Wesley, 1985.

Vendors/Agents: [E&V Team]

Method: Capabilities checklist.
Inputs: Capabilities checklist (see Table 15.1-1) and file manager documentation.
Process: Check off capabilities demonstrated by the file manager or discussed in the

documentation.
Outputs: A list of capabilities provided by the file manager.

15-1

E&V Guidebook, Version 3.0

Table 15.1-1 File Management Capabilities Checklist

FEATURE FOUND NOTES

Operations
Create
Read
Write
Delete
Rewind
Append
Copy
Rename
Update
Compress
Expand
Compare ____

Directories
Operations

Search
Create Directory
Delete Directoty
Rename Directory
List Directory
Backup
Restore

Structure
Single-Level (Flat)
Two-Level
Tree-Structured (Hierarchical)
Acyclic Graph
General Graph__________________ ______

15-2

E&V Guidebook, Version 3.0

Table 15.1-1 File Management Capabilities Checklist (Continued)

FFATURE FOUND NOTES

Storage

Format
Record Types

Fixed Length

Variable Length
Byte Count at Beginning
End of Record Marker

Blocked Records
Spanned Records
Polymorphic Records

Data
Text

ASCII
EBCDIC

Numbers
Integers

Signed Magnitude
l's Complement
2's Complement

Floating Point
IEEE Format

Persistent Knowledge of Ada Types
Media

Disk
Drum
Magnetic Tape
Other

Multi-Volume Files
Allocation Method

Contiguous
Linked
Indexed

Access Management
Sequential File
Direct (Random) Access File
Primary Indexing
Secondary Indexing
Hash-Coded Indexing

Access Security Protection
Dynamic Protection Structure
Data Encryption
File Password

Static
Dynamic
Multiple

Access Control
Controlled Operations

Read
Write
Execute
Append
Delete

Access Matrix
Global Table
Access List
Capability List
Lock/Key

15-3

E&V Guidebook, Version 3.0

15.2 DATABASE MANAGEMENT CHECKLIST

Purpose: Evaluation of the completeness and power of database management by developing
a list of functional capabilities.

[@RM: Database Management 7.2.1.1, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)]

Primary References: [Martin 1986] D. Martin, "Advanced Database Techniques," MIT Press,
1986.

Vendors/Agents: [E&V Team]

Method: Capabilities checklist.
Inputs: Capabilities checklist (see Table 15.2-1) and database manager documentation.
Process: Check off capabilities demonstrated by the database manager or discussed in the

documentation.
Outputs: A list of capabilities provided by the database manager.

15-4

E&V Guidebook, Version 3.0

Table 15.2-1 Database Management Capabilities Checklist

FEATURE FOUND NOTFS

Model
Hierarchical
Network
Relational
Object-Oriented
Other

Data Dictionary Management
Definitions

Files, Tables
Fields, Attributes
Relationships
Subschemas
Views

Single-Level
Multilevel

Objects, Entities
Data Types

Subtypes
User-Defined Types

Operations
Implementation Parameters
Non-Database Entities

Listing Descriptions
Cross-Referencing Descriptions
Dictionary History
Automatic Generation of Data Definition Statements

Data Queries
Non-Procedural Language (4GL)
Fill-in-the-Form
Query by Example

Report Generation
Query
Data Set
User-Defined

Update Mode
Static
Dynamic

Access Security Protection
Access Control

By View
By File. Table
By Object, Entity
By Relationship
By Operation (Read, Write. Append)

Data Encryption
Dynamic Password

Keyword Input Protection

Protection of Stored and Transmitted Data
Referential Integrity

Access ConflIct and Deadlock Protection
Access Locking
Dynamic Backout from Deadlock
Undoing Multiple Transactions

15-5

E&V Guidebook, Version 3.0

Table 15.2-1 Database Management Capabilities Checklist (Continued)

FFATURE FOUND NOTFS

Storage
Full-Length
Representation with Codes
Data Packing

Disk Space Management
Multi-Volume Files
Areas
File Groups

File Acces Management
Sequential File
Direct (Random) Access File
Primary Indexing
Secondary Indexing
Hashing
Hash-Coded Index
Database-Key
Bit-Vector Inverted File (Bit-index)

Entity Linking
One-to-One Relationship
One-to-Many Relationship
Many-to-Many Relationship

Application Program Interface
Application Development Language Interface
Standard DBMS Operations
Insertion (Record Creation or Addition)
Modification (Field Update)
Deletion
Link Creation and Suppression
Screen Generators

Program/Data Independence through Mapping

Program/Structure Independence Using Multilevel Views

Backup and Recovery
Transaction Logging
Cold Restart
Warm Restart

Data Restructuring Capabilities (Views)

Administration Capabilities
Interactive
Dictionary Management
Access Permission Management
Data Quality Verification

Communication Capabilities
Import. Bulk Data Loading
Export. Flat File Conversion
Single System Access
Multiple System Access
Distributed Database

Performance MonitorlngTunIng

Mlcelaneou
Terminal Independent
On-Line Help Facility

15-6

E&V Guidebook, Version 3.0

15.3 ELECTRONIC MAIL CHECKLIST

Purpose: Evaluation of the completeness and power of electronic mail by developing a list of
functional capabilities.

j@RM: Electronic Mail 7.2.1.4, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)1

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 Jine 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 15.3-1) and mail system documentation.
Process: Check off capabilities demonstrated by the mail system or discussed in the

documentation.
Outputs: A list of capabilities provided by the mail system.

15-7

E&V Guidebook, Version 3.0

Table 15.3-1 Electronic Mail Capabilities Checklist

FEATURE FOUND NOTES

Notification of New Mail

Receive Messages

Read Messages
Next
Previous
Show Message History/Status
First
Last
Specified

Edit Message
Create Message
Modify Header
Copy Message
Convert Message to Alternate Format
Attach/Detach Documents

Send Message
to Distribution List
across Network
to cc: (carbon copy) List
Registered Mail
Defer Delivery
Cancel Deferred Delivery

Save Message
File/Refile/Cross-File Message
Create Folders
Copy Folders
Delete Folders
Refile Folders
Cross-File Folders
Select Folders
Reorganize File Cabinet
Save/File Attachments

15-8

E&V Guidebook, Version 3.0

Table 15.3-1 Electronic Mail Capabilities Checklist (Continued)

FEATURE FOUND NOTES

Print Message
Single
Multiple
List/Print Messages/Folder Index

Delete Message
Single
Multiple

Miscellaneous
Initialize Environment
Configure Mailbox/Customize per User

Preferences
Manage Aliases
Manage Distribution Lists
Mark Messages/Unmark Messag-

es/Commit Changes (for Delet-
ing/Filing/Copying)

Auto Forward/Cancel Auto Forward
Auto Reply/Cancel Auto Reply
Sort Messages
Locate Message/Select by Content/Search

for String
Interfaces

to Bulletin Board
to Programs
to Fax

On-Line Help Facilities
Keypad Support
Mouse Support

15-9

E&V Guidebook, Version 3.0

15.4 TRADE JOURNAL COMMUNICATIONS TOOL EVALUATIONS

Purpose: Various trade journals have evaluated and compared communications tools. The
value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of communications tools, the articles are a good way
to quickly come up to speed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth.

[@RM: Electronic Mail 7.2.1.4, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Cost 6.4.11,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

(@RM: Text Editing 7.1.1.1,
@RM: Pre & User-Defined Forms 7.1.2.3,
@RM: Documentation Management 7.2.1.2,
@RM: Spelling Checking 7.3.1.2), @RM: Completeness 6.4.9;
@RM: Input/Output Support 7.2.3.2. (@RM: Completeness 6.4.9,

@RM: System Compatibility 6.4.35);
@RM: Emulation 7.3.2.13, (@RM: Completeness 6.4.9,

@RM: System Compatibility 6.4.35)]

Primary References: [Eva 19901 E. Eva, et al., Product Comparison, "Breaking Down
Communications Barriers with E-Mail," InfoWorld, vol. 12, issue 23, 4 June 1990, pp. 83-
109.

[Honan 1990] P. Honan and J. Desposito, Buyer's Guide, "Communications Software,"
Personal Computing, vol. 14, no. 4, 27 April 1990, pp. 109-139.

[Campbell 1989] G. Campbell, "Communications Software: Easy Choices," PC World, vol.
7, no. 8, August 1989, pp. 118-133.

[Simone 19891 L. Simone, "E-Mail, the Global Handshake," PC Magazine, vol. 8, no. 14,

August 1989, pp. 175-210.

Vendors/Agents: [InfoWorld, Personal Computing, PC World, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, communications tool(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

15-10

E&V Guidebook, Version 3.0

15.5 TRADE JOURNAL DATABASE MANAGER EVALUATIONS

Purpose: Various trade journals have evaluated and compared database managers. The value
of the articles is not so much the assessment of the specific products (since they quickly
become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of database managers, the articles are a good way to
quickly come up to npeed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth.

[@RM: Database Management 7.2.1.1, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

(@RM: Text Editing 7.1.1.1,
@RM: Pre & User-Defined Forms 7.1.2.3,
@RM: Sort/Merge 7.1.4,
@RM: Encryption 7.1.6.18,
@RM: Performance Monitoring 7.2.1.10,
@RM: Math/Statistics 7.2.3.4,
@RM: Debugging 7.3.2.5), @RM: Completeness 6.4.91

Primary References: [Petreley 1990] N. Petreley, Z. Banapour, and L. Slovik, Product
Comparison, "Dueling Servers," InfoWorld, vol. 12, issue 10, 5 March 1990, pp. 57-75.

[Lee 1989] C. Lee, Buyer's Guide, "Database Managers," Personal Computing, vol. 13, no.
12, December 1989, pp. 151-180.

[Shaw 1989] R.H. Shaw, "Databases for OS/2: The First Wave," PC Magazine, vol. 8, no.
11, 13 June 1989, pp. 94-138.

Vendors/Agents: [InfoWorld, Personal Computing, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, database manager(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

15-11

E&V Guidebook, Version 3.0

16. OTHER ASSESSORS

This chapter contains instances of E&V technology that do not conveniently fit one of the

earlier chapters. It is likely that in future versions of the Guidebook some of these
"miscellaneous" instances will be grouped together in new chapters, and therefore moved out

of Chapter 16.

16.1 TEXT EDITING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of text editing by developing a list of
functional capabilities.

[@RM: Text Editing 7.1.1.1, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)]

Primary References: [E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-
5234-2, Version 1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist.
Inputs: Capabilities checklist (see Table 16.1-1) and text editor documentation.
Process: Check off capabilities demonstrated during editing sessions or discussed in the

documentation.
Outputs: A list of capabilities provided by the text editor.

16-1

E&V Guidebook, Version 3.0

Table 16.1-1 Text Editing Capabilities Checklist

FEATURE FOUND NOTES

Locator Movement
Left, Right, Up, Down
Top, Bottom of File
Next/Previous Word
Beginning, End of Line
Beginning, End of Page (Screen)
Scroll Up, Down, Left, Right
Page Up, Down, Left, Right

Search/Replace
Search Forward, Backward
Regular Expression Search, Replace
Multiple Replace

Buffers
Copy Text To, From
Edit Multiple Files
Split Screen

Regions
Set Mark
Insert Region
Delete Region
Copy Region
Move Region
Hide, Show Region

File Manipulation
Copy From File
Append To File

Macros
Keyboard Macros
Macro Language

File Storage
Save (Continue Editing)
Quit (No Save)
Automatic Save
Versioning (Backup Original, Save Changes Only)
Baselining

Miscellaneous
Terminal Independent
On-Line Help Facility
Minimal Redisplay Algorithm (Refresh)
Key Redefinition
Undo Command
Command Recall, Redo
Command Type-Ahead
Session Logging
Spawn Command Language Process

16-2

E&V Guidebook, Version 3.0

16.2 LANGUAGE-SENSITIVE EDITING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of language-sensitive editing by developing
a list of functional capabilities. This list deals only with those features that provide the
language-sensitivity to the editor. For a list of features supporting general text editing see
the Text Editing Capabilities Checklist [16.1]. This list may be used to evaluate editors
which are sensitive to languages such as Ada or FORTRAN as well as word processors
which may be viewed as editors which are sensitive to the English language.

[@RM: Tet Editing 7.1.1.1, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22);

@RM: Syntax & Semantics Check 7.3.1.15, (@RM: Completeness 6.4.9,
@RM: Power 6.4.22)1

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 16.2-1) and text editor documentation.
Process: Check off capabilities demonstrated during editing sessions or discussed in the

documentation.
Outputs: A list of capabilities provided by the text editor.

16-3

E&V Guidebook, Version 3.0

Table 16.2-1 Language-Sensitive Editing Capabilities Checklist

FEATURE FOUND NOTES

Locator Movement
Next, Previous Word (Identifier, Keyword)
Beginning, End of Sentence (Statement, Com-

ment)
Beginning, End of Paragraph (Block)
Beginning, End of Section (Unit)
Beginning, End of Document (Compilation)

Search/Replace
Word - Where Used, Where Defined
Sentence
Paragraph
Template
Stub
Section

Regions
Define Region - Word, Sentence, Paragraph, Tem-

plate, Stub, Section
Insert Region
Delete Region
Copy Region
Move Region
Hide, Show Region
Comment Out Region

Display
High-Level Structure
Unclosed Structures
Matching Structures
Permitted Constructs
Words of Permitted Type

Miscellaneous
(User-Defined) Reformat
On-Line LRM Access
Support for Mixed Languages
Analyze Change - Section, Document
Check Spelling
Check Grammar (Syntax)
Check Meaning (Semantics)
Translate (Compile) - Sentence, Paragraph, Sec-

tion
Knowledge-based versus Template-based
Traceability between Objects

16-4

E&V Guidebook, Version 3.0

16.3 PERFORMANCE MONITORING CHECKLIST

Purpose: Evaluation of the completeness of performance monitoring by developing a list of
functional capabilities.

[@RM: Performance Monitoring 7.2.1.10, @RM: Completenem 6.4.91

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 16.3-1) and performance monitor documentation.
Process: Check off capabilities demonstrated by the performance monitor or discussed in

the documentation.
Outputs: A list of capabilities provided by the performance monitor.

Table 16.3-1 Performance Monitor Capabilities Checklist

FEATURE FOUND NOTES

Hardware
CPU Time (Real And Virtual)
Memory Usage
1/0 Channel Traffic
Terminal Response
Terminal Connect Time
Terminal Availability
Disk Usage
Disk Space Availability
Tape Mounts
Tape Drive Availability
Printout Quantity

Software
Tool Usage
Program Library Monitoring
Wall Clock Time

16-5

E&V Guidebook, Version 3.0

16.4 SCHEDULING CHECKLIST

Purpose: Assess the ability of the project management tools to depict the project milestones
and their relationships in a timed schedule format.

[@RM: Scheduling 7.2.2.3; @RM: Completeness 6.4.91

Primary References:

Vendors/Agents: [E&V Team]

Method: Checklist.
Inputs: Capabilities Checklist (see Table 16.4-1) and project management documentation.
Process: Check off capabilities cited in documentation and test the ones of interest to the

project.
Outputs: A list of capabilities provided by the project management tools.

16-6

E&V Guidebook, Version 3.0

Table 16.4-1 Scheduling Checklist

FEATURE FOUND NOTES

CPM Graph
Automatic generation of CPM from input data
Automatic Gantt chart generation from the CPM

PERT Chart
Automatic generation of PERT from input data
Automatic Gantt chart generation from the PERT

Gantt Chart
Depict duration required for project completion

based on:
Individual activity
Group of activities
Total project
Milestone achievement
Calendar time schedule

Allow the assignment of resources to Gantt chart
entities

Allow the assignment of budget to Gantt chart
entities

Import/Export of Milestone Data between Projects
Individual activity
A group of activities
Groups of activities
Complete project
Network of projects
Milestones
Resources
Calendar time segments

Integration/Merging of Data from Several Projects
Individual activity
A group of activities
Groups of activities
Complete project
Network of projects
Milestones
Resources
Calendar time segments

Reporting
Text, graphics and merged text and graphics
Internal (user-defined format and contents) re-

ports
External (customer-defined format and contents)

reports

16-7

E&V Guidebook, Version 3.0

16.5 TRACKING CHECKLIST

Purpose: Assess the ability of the project management tools to periodically or continuously
collect, analyze, and report current milestone and resource data to make project progress
visible.

[@RM: Tracking 7.2.26; @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Checklist.
Inputs: Capabilities Checklist (see Table 16.5-1) and project management documentation.
Process: Check off capabilities cited in documentation and test the ones of interest to the

project.
Outputs: A list of capabilities provided by the project management tools.

16-8

E&V Guidebook, Version 3.0

Table 16.5-1 Tracking Checklist

FEATURE FOUND NOTFS

Resource Status Data
Tracking of budget data collected and monitored by.

Work Breakdown Structure
Cost Element Structure
Individual Activity
Group of Activities
Groups of Activities
Complete Project
Network of Projects
Calendar Time Segments

Loading to view resource loading on the basis of:
Individual Activity
Group of Activities
Project Completion
Milestone Achievement
Calendar Iime Schedule
Percentage of Resource
Priority of Resource Usage
Directly from Gantt chart entities
Directly from PERT chart entities
Directly from CPM chart entities

Assignment to track resource responsibilities on the basis of:
Individual Activity
Group of Activities
Project Completion
Milestone Achievement
Calendar Time Schedule

Usage definition to track resources in terms of:
How it is used
Where it is used
By whom it is used
Who is responsible for its use
What percentage of it is used
When that percentage is used
What percentage is available for use
When that percentage is available for use
Identification of backup resources in the case of failure
Cost of use

Analysis to view the requirements changes and percentage of a
resource exhausted on the following basis:

Individual Activity
Group of Activities
Milestone
Group of Milestones
Calendar Time Schedule

16-9

E&V Guidebook, Version 3.0

Table 16.5-1 Tracking Checklist (Continued)

FEATURE FOUND NOTFS

Cost Management
Tracking and comparison of budget data collected and moni-
tored by-

Work Breakdown Structure
Cost Element Structure
Individual Activity
Group of Activities
Groups of Activities
Complete Project
Network of Projects
Calendar Time Segments

Analysis to determine current earned value of an activity or
resource to find:

Percent of a task's duration that is completed
Percent of a resource that has been used
Consequences of changing budgetary allocations

Milestone Status Data
Tracking qnd comparison of milestone status data collected and
monitored by:

Work Breakdown Structure
Cost Element Structure
Individual Activity
Group of Activities
Groups of Activities
Complete Project
Network of Projects
Calendar Time Segments

Analysis to determine milestone requirements changes and
percent completion for resources expended on the following
basis:

Ladividual Activity
Group of Activities
Milestone
Group of Milestones
Calendar Time Schedule

Import/Export of Data between Projects
Budget data
Milestone status data
Resource data

Integration/Merging of Data from Several Projects
Budget data
Milestone status data
Resource data

Reporting
Cost management reports
Milestone status reports
Resource status reports
Ad hoc reports

16-10

E&V Guidebook, Version 3.0

16.6 STEM/TRW DOCUMENTATION TOOLS EVALUATION

Purpose: Evaluation of the capabilities of documentation tools. The goals of this project are
to develop evaluation procedures, identify and classify documentation tools, evaluate some
tools, and contribute to the STEM database [@STSC 19901. A hierarchical checklist has
been developed, including the following top-level categories:

User Interface
Input Devices, Formats and Filters
Output Devices, Formats and Filters
Create/Edit Text, Tables, Graphics
Document Design, Composition
File/Database Management
Communications and Networking
System and Job Control
Hardware
Unique User Requirements

The cited reference provides second-level entries under all of the above categories.

[@RM: Text Editing 7.1.1.1, (@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35);

CeRM: Graphics Editing 7.1.1.3. (@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35);

@RM: Formatting 7.1.2, (@RM: Commonality 6.4.7,
@RM: Completeness 6.4.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35);

0,1RM: Documentation Management 7.2.1.2, (@RM: Commonality 6.4.7,
@RM: Completeness 64.9,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27.
@RM: System Compatibility 6.4.35)]

Primary References: [Satterthwaite 1990] L.H.Satterthwaite, "Documentation Tool Evaluation
Project," USAF STSC - HQ USAF/SC Joint Software Conference Proceedings, Salt Lake
City, 23-26 April 1990 [@STSC 1990].

[Software Tool Evaluation Model (STEM) 4.20]

Vendors/Agents: [STSC, TRW]

16-11

E&V Guidebook, Version 3.0

Method: Capabilities Checklist
Inputs: Capabilities checklist and documentation tool and its documentation.
Process: Check off capabilities demonstrated by testing or discussed in the documentation.
Outputs: A list of capabilities provided by the tool.

16-12

E&V Guidebook, Version 3.0

16.7 Ada-EUROPE: PROJECT MANAGEMENT QUESTIONNAIRE

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of J1_hn
Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environment
under consideration." It generally follows the structure proposed in Stoneman [@Buxton
1980]; it "starts from the inside of the onion structure and works outwards." Each of its
19 chapters follows a standard format. Topics are introduced and discussed, typically using
one or two pages of text, and then a list of appropriate questions is provided. Chapter 16
discusses issues associated with project and product management (integration with a
database, estimation planning and monitoring tools, quality management and configuration
management, and social and legal aspects).

[(@RM: Cost Estimation 7.2.2.1,
@RM: Quality Specification 7.2.2.2,
@RM: Resource Estimation 7.2.2.5,
@RM: Tracking 7.2.2.6), @RM: Completeness 6.4.91

Primary References: [Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and
J.C.D. Nissen, Ada-Europe Working Group, Cambridge University Press, 1986, Chapter
16.

[Ada-Europe: Selecting an Ada Environment 4.9]

Vcndors/Agents: [Cambridge University Press]

Method: Questionnaire.
Inputs: Questionnaire, tool, and tool documentation.
Process: Answer the questions by using the tool, reading the documentation, or asking the

vendor of the tool.
Outputs: Completed questionnaire.

16-13

E&V Guidebook, Version 3.0

16.8 TRADE JOURNAL WORD PROCESSOR EVALUATIONS

Purpose: Various trade journals have evaluated and compared word processors. The value of
the articles is not so much the assessment of the specific products (since they quickly
become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of word processors, the articles are a good way to
quickly come up to speed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth. The line between word processors, which traditionally focused on text processing,
and desktop publishers, which traditionally focused on graphics and page layout, is
becoming increasingly blurred (see also [16.9]).

[@RM: Text Editing 7.1.1.1, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13.
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23.
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Graphics Editing 7.1.1.3, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27.
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Formatting 7.1.2, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Spelling Checking 7.3.1.2, (@RM: Completeness 6.4.9,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27);

(@RM: Syntax & Semantics Check 7.3.1.15, (@RM: Completeness 6.4.9.
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38)]

16-14

E&V Guidebook, Version 3.0

Primary References: [Honan 1990a] P. Honan and J. Devlin, Buyer's Guide, "Word
Processing," Personal Computing, vol. 14, no. 8, August 1990, pp. 133-150.

[Campbell 19901 G. Campbell, "Picture-Perfect Word Processing," PC World, vol. 8, no. 5,
May 1990, pp. 104-111.

[Lombardi 1990] J. Lombardi, Product Comparison, "Treasures Abound," InfoWorld, vol.
12, issue 5, 29 January 1990, pp. 89-115.

[Mendelson 1989a] E. Mendelson, "Two Aces and a King: The Big Three WorC Processors
Raise the Ante," PC Magazine, vol. 8, no. 20, 28 November 1989, pp. 97-122.

Vendors/Agents: [Personal Computing, PC World, InfoWorld, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, word processor(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

16-15

E&V Guidebook, Version 3.0

16.9 TRADE JOURNAL DESKTOP PUBLISHING EVALUATIONS

Purpose: Various trade journals have evaluated and compared desktop publishers. The value
of the articles is not so much the assessment of the specific products (since they quickly
become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of desktop publishers, the articles are a good way to
quickly come up to speed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth. The line between desktop publishers, which traditionally focused on graphics and
page layout, and word processors, which traditionally focused on text processing, is
becoming increasingly blurred (see also [16.8]).

[@RM: Text Editing 7.1.1.1, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9.
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Graphics Editing 7.1.1.3, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Formatting 7.1.2, (@RM: Anomaly Management 6.4.2.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13.
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Syntax & Semantics Check 7.3.1.15, (@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38)

Primary References: [Simone 1990] L. Simone, "Self-Sufficient Publishing," PC Magazine, vol.
9, no. 4, 27 February 1990, pp. 97-176.

[Assadi 1990] B. Assadi and G. Gruman, Product Comparison, "Putting the Best to the
Test," InfoWorld, vol. 12, issue 1, 1 January 1990, pp. 39-55.

[Bell 1989] J. Bell and M. Young, Buyer's Guide, "Desktop Publi.hing Software," Personal
Computing, vol. 13, no. 6, June 1989, pp. 115-170.

16-16

E&V Guidebook, Version 3.0

Vendors/Agents: [PC Magazine, InfoWorld, Personal Computing]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, desktop publisher(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

16-17

E&V Guidebook, Version 3.0

16.10 TRADE JOURNAL PRESENTATION GRAPHICS EVALUATIONS

Purpose: Various trade journals have evaluated and compared presentation graphics packages.
The value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of presentation graphics packages, the articles are a
good way to quickly come up to speed on what the issues are. In some cases the articles
are a good way to perform a "first cut" evaluation to narrow the list of products to be
evaluated in depth.

[@RM: Text Editing 7.1.1.1, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Data Editing 7.1.1.2, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM- Graphics Editing 7.1.1.3, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Pre & User-Defined Forms 7.1.2.3, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Graphics Generation 7.1.5, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23.
@RM: Required Configuration 6.4.27.
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38);

(-aRM: Math/Statistics 7.2.3.4, (@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38)

16-18

E&V Guidebook, Version 3.0

Primary References: [Fridlund 1990] A.J. Fridlund, Product Comparison, "Making Your Point -
with Style," InfoWorld, vol. 12, issue 24, 11 June 1990, pp. 63-70.

[Devlin 1990] J. Devlin and J. Pepper, Buyer's Guide, "Business Graphics Software,"
Personal Computing, vol. 14, no. 2, February 1990, pp. 119-144.

[Jantz 1989] R. Jantz and M. Smith-Heimer, "Polished Presentations," PC World, vol. 7,
no. 11, November 1989, pp. 116-131.

[Raskin 1989] R. Raskin, "The Packages Behind the Presentation," PC Magazine, vol. 8,
no. 17, 17 October 1989, pp. 95-129.

Vendors/Agents: [InfoWorld, Personal Computing, PC World, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, presentation graphics package(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

16-19

E&V Guidebook, Version 3.0

16.11 TRADE JOURNAL SPREADSHEET EVALUATIONS

Purpose: Various trade journals have evaluated and compared spreadsheet packages. The
value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of spreadsheet packages, the articles are a good way
to quickly come up to speed on what the issues are. In some cases the articles are a good
way to perform a "first cut" evaluation to narrow the list of products to be evaluated in
depth.

[@RM: Data Editing 7.1.1.2, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6-4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32,
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Pre & User-Defined Forms 7.1.2.3, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Storage Effectiveness 6.4.32,
@RM: Vendor Support 6.4.38);

@RM: Graphics Generation 7.1.5, (@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13.
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Sort/Merge 7.1.4, (@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9.
@RM: Documentation Quality 6.4.13.
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23,
@RM: Required Configuration 6.4.27,
@RM: Vendor Support 6.4.38);

@RM: Math/Statistics 7.2.3.4, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22.
@RM: Required Configuration 6.4.27.
@RM: Vendor Support 6.4.38)]

16-20

E&V Guidebook, Version 3.0

Primary References: [Stinson 19901 C. Stinson, "Spreadsheet Heavyweights Take on 1-2-3," PC
Magazine, vol. 9, no. 8, 24 April 1990, pp. 97-156.

[Scoville 19901 R. Scoville, "Seven Sensible Spreadsheets," PC World, vol. 8, no. 4, April
1990, pp. 116-131.

[Apiki 1990] S. Apiki, et al., "Product Focus: Not Just for Numbers Anymore," BYTE, vol.
15, no. 2, February 1990, pp. 148-166.

[Walkenbach 1990] J. Walkenbach, Product Comparison, "High End Sheets," InfoWorld,
vol. 12, issue 4, 22 January 1990, pp. 57-73.

[Hlavaty 1989] C. Hlavaty, Buyer's Guide, "Spreadsheet Software," Personal Computing,
vol. 13, no. 11, November 1989, pp. 135-178.

Vendors/Agents: [PC Magazine, PC World, BYTE, InfoWorld, Personal Computing]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, spreadsheet package(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

16-21

E&V Guidebook, Version 3.0

16.12 TRADE JOURNAL PROJECT MANAGEMENT EVALUATIONS

Purpose: Various trade journals have evaluated and compared project manageme:nt packages.
The value of the articles is not so much the assessment of the specific products (since they
quickly become outdated), but the explanation of the how they perform the evaluation or
comparison. Many articles go into some detail about what features should be in each of
the products and how they evaluate performance and usability of the products. For
somebody just starting an evaluation of project management packages, the articles are a
good way to quickly come up to speed on what the issues are. In some cases the articles
are a good way to perform a "first cut" evaluation to narrow the list of products to be
evaluated in depth.

[@RM: Data Editing 7.1.1.2. (@RM: Anomay Management 6.4.2,
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35,
@RM: Vendor Support 6.4.38);

@RM: Documentation Management 7.2.1.2, (@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4-33,
@RM: Vendor Support 6.4.38);

@RM: Electronic Mail 7.2.1.4, (@RM: Anomaly Management 6.4.2,
@RM: Completeness 6.4.9.
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: System Accessibility 6.4.33.
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38);

@RM: Scheduling 7.2.2.3, (@RM: Anomaly Management 6.4.2,
@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13.
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23.
@RM: System Accessibility 6.4.33,
@RM: Vendor Support 6.4.38);

('RM: Work Breakdown Structure 7.2.2.4, (@RM: Capacity 6.4.6.
@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22,
@RM: System Accessibility 6.4.33.
@RM: Vendor Support 6.4.38);

@RM: Resource Estimation 7.2.2.5, (@RM: Completeness 6.4.9,
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21.
@RM: Power 6.4.22,
@RM: Processing Effectiveness 6.4.23.
@RM: Vendor Support 6.4.38);

@RM: Tracking 7.2.2.6, (@RM: Completeness 6.4.9.
@RM: Documentation Quality 6.4.13,
@RM: Operability 6.4.21,
@RM: Power 6.4.22.
@RM: System Accessibility 6.4.33,
@RM: System Compatibility 6.4.35.
@RM: Vendor Support 6.4.38)1

16-22

E&V Guidebook, Version 3.0

Primary References: [Lauriston 1990a] R.J. Lauriston, "Work-Group Software Worth Waiting
For," PC World, vol. 8, no. 6, June 1990, pp. 122-138.

[Rupley 19891 S. Rupley, Product Comparison, "Meeting Makers," InfoWorld, vol. 11, issue
47, 20 November 1989, pp. 63-77.

[Derfler 1989] F.J. Derfler, "Imposing Efficiency: Workgroup Productivity Software," PC
Magazine, vol. 8, no. 15, 26 September 1989, pp. 247-272.
[Heck 1989] M. Heck, Product Comparison, "Mission: Made Possible," InfoWorld, vol. 11,

issue 39, 25 September 1989, pp. 57-76.

Vendors/Agents: [PC World, InfoWorld, PC Magazine]

Method: Capabilities checklist(s) and performance benchmark tests.
Inputs: Checklists, benchmark tests, project management package(s), and documentation.
Process: 1) Check off capabilities by using the tool, reading the documentation, or

asking the vendor of the tool.
2) Run the performance benchmark tests.

Outputs: Completed checklist(s) and performance reports.

16-23

E&V Guidebook, Version 3.0

APPENDIX A

CITATIONS

[ACEC 1990] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) Reader's Guide," Air Force Wright Research and Development Center, D500-
12471-1, May 1990.

[ACEC 1990a] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User's Guide," Air Force Wright Research and Development Center, D500-12470-
1, May 1990.

[ACEC 1990b] '"Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) Version Description Document," Air Force Wright Research and Development
Center, D500-12472-1, May 1990.

[ACVC 1989] Ada Compiler Validation Procedures, Version 2.0, AJPO, May 1989.

[Albus 1986] J.A. Abus, H.G. McCain, and R. Lumia, "NASA/NBS Reference Model for
Telerobot Control System Architecture (NASREM)," National Bureau of Standards, Robot
System Division, 4 December 1986.

[ANSI 1988] "Information Resource Dictionary System (IRDS)," American National Standard
for Information Systems, ANSI X3.138-1988, American National Standards Institute, Inc.,
New York, NY, 1988.

[Apiki 1990] S. Apiki, et al., "Product Focus: Not Just for Numbers Anymore," BYTE, vol. 15,
no. 2, February 1990, pp. 148-166.

[ARTEWG 1987] "Catalogue of Ada Runtime Implementation Dependencies," Association for
Computing Machinery, Special Interest Group on Ada, Ada Runtime Environment
Working Group, 1 December 1987.

[ARTEWG 1988] "A Framework for Describing Ada Runtime Environments," Proposed by
Ada Runtime Environment Working Group (SIGAda), Ada Letters, Volume VIII, Number
3, May/June 1988, pp. 51-68.

[Assadi 1990] B. Assadi and G. Gruman, Product Comparison, "Putting the Best to the Test,"
InfoWorld, vol. 12, issue 1, 1 January 1990, pp. 39-55.

A-1

E&V Guidebook, Version 3.0

[Baram 1989] G. Baram and G. Steinberg, "Selection Criteria for Analysis and Design CASE
Tools," Software Engineering Notes, ACM SIGSoft, Vol. 14, No. 6, pp. 73-80, October
1989.

[Barnes 1985] Proceedings of the nternational Ada Conference, Paris, eds. J.G.P. Barnes and
G.A. Fisher, Jr, Cambridge University Press, 1985.

[Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive Programming
Environments," [@Wasserman 1981], pp. 286-301, 1981.

[Bell 1989] J. Bell and M. Young, Buyer's Guide, "Desktop Publishing Software," Personal
Computing, vol. 13, no. 6, June 1989, pp. 115-170.

[Berk 1990] K.J. Berk and R.P. Hanrahan, "Evaluating Tools and Environments Concept,"
Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, NAECON
1990, May 1990, Volume 2, pp. 658-663.

[Bowen 1985] T.P. Bowen, G.B. Wigle, and J.T. Tsai, "Specification of Software Quality
Attributes Software Quality Evaluation Guidebook," Rome Air Development Center,
Griffiss AFB, RADC-TR-85-37, Volume III (of three), February 1985, DTIC Number
AD A153 990.

[Brody 1989] A. Brody, Product Comparison, "The Experts," InfoWorld, vol. 11, issue 25, 19
June 1989, pp. 59-75.

[Brown 1990] B. Brown, "Playing the DOS Shell Game," PC Magazine, vol. 9, no. 11, 12 June
1990, pp. 185-244.

[Buxton 1980] J.N. Buxton, "Requirements for Ada Programming Support Environments -
STONEMAN," U.S. Department of Defense, February 1980, DTIC Number AD A100 404.

[Byrne 1990] D.J. Byrne and R.C. Ham, "Ada Versus FORTRAN Performance Analysis Using
the ACPS," [@PIWG 1990], pp. 139-145, 1990.

[Campbell 1989] G. Campbell, "Communications Software: Easy Choices," PC World, vol. 7,
no. 8, August 1989, pp. 118-133.

[Campbell 1990] G. Campbell, "Picture-Perfect Word Processing," PC World, vol. 8, no. 5, May
1990, pp. 104-111.

[Castor 1984] V.L. Castor, "Evaluation and Validation (E&V) Team Public Report," Volume
I, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, 30 November 1984,
DTIC Number AD A153 609.

[CECOM 1989] "Procedures For Computer-Aided Software Engineering Tool Assessment,"
CECOM Center for Software Engineering, US Army Communications-Electronics
Command, ?, April 1989, DTIC Number pending.

A-2

E&V Guidebook, Version 3.0

[CECOM 1989a] "Evaluation Ot Existing CASE Tools For Tactical Embedded Systems,"
CECOM Center for Software Engineering, US Army Communications-Electronics
Command, ?, April 1989, DTIC Number pending.

[CIVC 1989] "CIVC Implementor's Guide," CIVC-FINL-19-1, SofTech, Inc., 16 October 1989.

[CIVC 19901 "CIVC1 Framework," CVC-VREL-2/1-01, SofTech, Inc., 1 March 1990.

[CIVC 1990a] "Test Report Reader's Guide with Appendix 1 - Operator's Guide," CIVC-
FINL-020-02, SofTech, Inc., 19 March 1990.

[CIVC 1990b] "CIVC 2.0 Beta Test Suite Operator's Guide," CIVC-FINL-20-03, 18 July 1990.

[Clapp 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze, "Toward
Real-Time Performance Benchmarks for Ada," Robotics Research Laboratory, Dept. of
Electrical Engineering and Computer Science, The Univ. of Michigan, RSD-TR-12-86, July
1986.

[Clapp 1986a] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze, "Toward
Real-Time Performance Benchmarks for Ada," Communications of the ACM, Volume 29,
Number 8, August 1986, pp. 760-778.

[Clapp 1990] R.M. Clapp and T. Mudge, "Parallel and Distributed Issues," [@PIWG 1990],
pp. 33-37, 1990.

[DACS 1979] The DACS Glossary, A Bibliography of Software Engineering Terms, October
1979.

[DeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and Evaluation
Subenvironment in an Advanced Software Engineering Environment," Georgia Institute
of Technology GIT-SERC-86/07, 20 October 1986.

[Derfler 1989] F.J. Derfler, "Imposing Efficiency: Workgroup Productivity Software," PC
Magazine, vol. 8, no. 15, 26 September 1989, pp. 247-272.

[Devlin 1990] J. Devlin and J. Pepper, Buyer's Guide, "Business Graphics Software," Personal
Computing, vol. 14, no. 2, February 1990, pp. 119-144.

[Dewan 1988] P. Dewan, "A Framework for Analyzing User Interfaces," Software Engineering
Research Center, Purdue University, SERC-TR-11-P, 24 May 1988.

[DoD APSE Analysis 1984] [@E&V Report: DoD APSE Analysis Report C.]

[DoD 1977] DoD, "Requirements for High Order Computer Languages (IRONMAN)," U.S.
Department of Defense, 1977, DTIC Number AD AI00 403.

A-3

E&V Guidebook, Version 3.0

[DoD 1982] "Software Development Methodologies and Ada (METHODMAN)," U.S.
Department of Defense, 1982.

[DoD 19831 ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming
Language, U.S. Department of Defense, 17 February 1983, DTIC Number AD A131 511.

[DoD 1983a] "Trusted Computer System Evaluation Criteria," CSC-STD-001-83, U.S.
Department of Defense Computer Security Center, 15 August 1983, DTIC Number AD
A207 905.

[DoD 19861 DoD-STD-1838, Common APSE Interface Set (CAIS), U.S. Department of
Defense, 9 October 1986, DTIC Number AD A157 589.

[DoD 1989] "Common APSE Interface Set, Revision A," MIL-STD-1838A, U.S. Department
of Defense, April 1989, DTIC Number AD A157 589.

[Donaldson 1988] C. Donaldson and P.B. Dyson, "Computer-Aided Systems and Software
Engineering Products for Time-Critical Applications Development," Software Productivity
Solutions (SPS), Inc., April 1988.

[Donohoe 1990] P. Donohoe, R. Shapiro, and N.H. Weiderman, "Hartstone Benchmark User's
Guide, Version 1.0," SEI-90-UG-1, Software Engineering Institute, March 1990.

[Donohoe 1990a] P. Donohoe, R. Shapiro, and N.H. Weiderman, "Hartstone Benchmark
Results and Analysis, Version 1.0," SEI-90-TR-7, Software Engineering Institute, June 1990.

[E&V Plan] [@Castor 1984: E&V Plan A]. [@Szymanski 1987: E&V Plan A].

[E&V Reference Manual] [@RM].

[E&V Requirements 1984] [@Castor 1984: E&V Requirements B.].

[E&V Requirements 1987] [@Szymanski 1987: E&V Requirements D].

[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version 1.0, 15
June 1987.

[E&V Tools and Aids 1990] [@Szymanski 1990: Tools and Aids H].

[Eva 1990] E. Eva, et al., Product Comparison, "Breaking Down Communications Barriers with
E-Mail," InfoWorld, vol. 12, issue 23, 4 June 1990, pp. 83-109.

[Fersko-Weiss 1990] H. Fersko-Weiss, "CASE Tools for Designing Your Applications," PC
Magazine, vol. 9, no. 2, 30 January 1990, pp. 213-251.

A-4

E&V Guidebook, Version 3.0

[FIPS 1989] "Information Resource Dictionary System (IRDS)," Federal Information
Processing Standard Publication, FIPS PUB 156, National Institute of Standards and
Technology, Gaithersburg, MD, April 5, 1989.

[Firth 1987] R. Firth, V. Mesley, R. Pethia, L. Roberts, W. Wood, "A Guide to the Classifica-
tion and Assessment of Software Engineering Tools," Software Engineering Institute,
Technical Report, CMU/SEI-87-TR-10, August 1987, DTIC Number AD A182 895.

[Fridlund 1990] A.J. Fridlund, Product Comparison, "Making Your Point - with Style,"
InfoWorld, vol. 12, issue 24, 11 June 1990, pp. 63-70.

[Goforth 1990] A. Goforth, P. Collard, and M. Marquardt, "Performance Measurement of
Parallel Ada: An Application Based Approach," [@PIWG 1990], pp. 38-58, 1990.

[Goodwin 1990] M. Goodwin, "Disk Trouble? No, Thanks," PC World, vol. 8, no. 7, July 1990,
pp. 133-148.

[Gray 1987] L. Gray, "Using the SEI's Methodology for Evaluating Ada Environments: A
Comparison of VAX/VMS to Rational," Proceedings of the AIAA Computers in
Aerospace VI Conference, 7-9 October 1987.

[Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics of Ada
Programming Support Environments," MITRE Corporation, ESD-TR-85-144, 9590, July
1985, DTIC Number AD B096 137.

[Hampton 1990] J.Hampton, D.Dyer, and G.Daich, "STEM for Test Tools," [@STSC 1990],
1990.

[Heck 1989] M. Heck, Product Comparison, "Mission: Made Possible," Info World, vol. 11, issue
39, 25 September 1989, pp. 57-76.

[Henderson 1987] P.B. Henderson and D. Notkin, "Integrated Design and Programming
Environment," Computer, IEEE, November 1987.

[Hlavaty 1989] C. Hlavaty, Buyer's Guide, "Spreadsheet Software," Pe ronal Computing, vol.
13, no. 11, November 1989, pp. 135-178.

[Honan 1990] P. Honan and J. Desposito, Buyer's Guide, "Communications Software."
Personal Computing, vol. 14, no. 4, 27 April 1990, pp. 109-139.

[Ilonan 1990a] P. Honan and J. Devlin, Buyer's Guide, "Word Processing," Personal
Computing, vol. 14, no. 8, August 1990, pp. 133-150.

[look 1985] A.A. Hook, G.A. Riccardi, M. Vilot, and S. Welke, "User's Manual for the
Prototype Ada Compiler Evaluation Capability (ACEC)," Version 1, Institute for Defense
Analysis, IDA Paper P-1879, October 1985, DTIC Number AD A163 272.

A-5

E&V Guidebook, Version 3.0

[Houghton 1983] R.C. Houghton, Jr., "A Taxonomy of Tool Features for the Ada Program-
ming Support Environment (APSE)," U.S. Department of Commerce, National Bureau of
Standards, NBSIR-81-2625, December 1982, Issued February 1983.

[Houghton 1987] R.C. Houghton, Jr. and D.R. Wallace, "Characteristics and Functions of
Software Engineering Environments: An Overview," ACM Software Engineering Notes,
Vol. 12, No. 1, January 1987.

[Howden 1982] W.E. Howden, "Contemporary Software Development Environments,"
Communications of the ACM 25(5), pp. 318-329, 1982.

[ISTAR 1987] Workshop on Future Development Environments, Information Science and
Technology Assessment for Research, Conference on Information Mission Area (IMA)
Productivity, Department of Army Director of Information Systems for Command, Control,
Communications and Computers, 13-15 April 1987, pp 28.

[Jackson 1985] A.R. Jackson, "Abstract Data Types and the IPSE Database," [@McDermid
1985], pp. 135-145, 1985.

[Jantz 1989] R. Jantz and M. Smith-Heimer, "Polished Presentations," PC World, vol. 7, no.
11, November 1989, pp. 116-131.

[Kean 1985] E.S. Kean and F.S. Lamonica, "A Taxonomy Of Tool Features For A Life Cycle
Software Engineering Environment," Rome Air Development Center, Griffiss AFB, June
1985, DTIC Number AD B096 355.

[Lauriston 1990] R. Lauriston, "Cache Values," PC World, vol. 8, no. 2, February 1990, pp.
130-139.

[Lauriston 1990a] R.J. Lauriston, "Work-Group software Worth Waiting For," PC World, vol.
8, no. 6, June 1990, pp. 122-138.

[Lauriston 1990b] R. Lauriston, "Hard Disk Health Insurance," PC World, vol. 8, no. 7, July
1990, pp. 109-118.

[Law 1988] M.H. Law, "Guide to Information Resource Dictionary System Applications:
General Concepts and Strategic Systems Planning," NBS Special Publication 500-152,
National Bureau of Standards, Gaithersburg, MD, .pril 1988.

[Lawlis 1989] P.K. Lawlis, "Supporting Selection Decisions Based on the Technical Evaluation
of Ada Environments and Their Components," PhD. dissertation, Arizona State University,
August 1989.

[Lee 1989] C. Lee, Buyer's Guide, "Database Managers," Personal Computing, vol. 13, no. 12,
December 1989, pp. 151-180.

A-6

E&V Guidebook, Version 3.0

[Lehman 19811 M.M. Lehman, "The Environment of Program Development, Maintenance
Programming, and Program Support," [@Wasserman 19811, pp. 3-14, 1981.

[Lombardi 1990] J. Lombardi, Product Comparison, "Treasures Abound," InfoWorld, vol. 12,
issue 5, 29 January 1990, pp. 89-115.

[Long 1988] F.W. Long, and M.D. Tedd, "Evaluating Tool Support Interfaces," Ada in
Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June 1988, Cambridge
University Press, 1988.

[Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D. Nissen, Ada-
Europe Working Group, Cambridge University Press, 1986.

[Marshall 1990] P. Marshall, Product Comparison, "Giving DOS a New Face," InfoWorld, vol.
12, issue 16, 16 April 1990, pp. 57-77.

[Martin 1986] D. Martin, "Advanced Database Techniques," MIT Press, 1986.

[McClure 1989] C. McClure, "The CASE Experience," BYTE, vol. 14, no. 4, April 1989, pp.
235-245.

[McDermid 1984] J. McDermid and K. Ripken, "Life Cycle Support in the Ada Environment,"
Cambridge University Press, 1984.

[Mendelson 1989] E. Mendelson, "Backup Software: For the Moment After," PC Magazine,
vol. 8, no. 8, August 1989, pp. 269-322.

[Mendelson 1989a] E. Mendelson, "Two Aces and a King: The Big Three Word Processors
Raise the Ante," PC Magazine, vol. 8, no. 20, 28 November 1989, pp. 97-122.

[Mendelson 1990] E. Mendelson, "Disaster Relief: DOS Utilities Save the Day," PC Magazine,
vol. 9, no. 6, 27 March 1990, pp. 97-132.

[Nejmeh 1989] B.A. Nejmeh, "Characteristics of Integrable Software Tools," Software
Productivity Consortium, INTEGS/WTOOLS-89036-N, Version 1.0, 23 May 1989.

[Nissen 1984] J.C.D. Nissen, B.A. Wichmann, et al.,"Guidelines for Ada Compiler Specification
and Selection," in Ada: Language, Compilers And Bibliography, ed. M.W. Rogers,
Cambridge University Press, 1984.

[Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development Environment Issues
as Related to Ada," [@Wasserman 1981], pp. 107-133, 1981.

[Oberndorf 1988] P.A. Oberndorf, "The Common Ada Programming Support Environment
(APSE) Interface Set (CAIS)," IEEE Transactions on Software Engineering, Vol. 14, No.
6, June 1988.

A-7

E&V Guidebook, Version 3.0

[Peterson 1985] J.L. Peterson and A. Silberschatz, "Operating System Concepts," 2nd edition,
Addison-Wesley, 1985.

[Petreley 19901 N. Petreley, Z. Banapour, and L. Slovik, Product Comparison, "Dueling
Servers," InfoWorld, vol. 12, issue 10, 5 March 1990, pp. 57-75.

[Petrick 1989] B.A. Petrick and S.J. Yanke, "An Analysis of The Definition of a Production
Quality Ada Compiler," Engineering Group, The Aerospace Corporation, Volume I
(SSD-TR-89-81) and Volume II (SSD-TR-89-82, PQAC Test Suite), 13 March 1989.

[Pierce 1986] R.H. Pierce, I. Marshall, and S.D. Blude, "An Introduction to the MoD Ada
Evaluation System," Software Sciences Ltd., Report Number 5485, June 1986.

[PIWG 1990] "Ada Performance Issues," Ada Letters, Special Edition from SIGAda, the
ACM Special Interest Group on Ada Performance Issues Working Group, Vol. X, Number
3, Winter 1990.

[Rainer 1986] S.R. Rainer and T.P. Reagan, "User's Manual for the Ada Compilation
Benchmark Generator Tool," MITRE Corp. MTR-87W00192-01, January 1988.

[Raskin 1989] R. Raskin, "The Packages Behind the Presentation," PC Magazize, vol. 8, no.
17, 17 October 1989, pp. 95-129.

[RM] "Evaluation and Validation (E&V) Reference Manual," Version 3.0, Wright Research
and Development Center, WRDC TR-90-?, Wright Patterson AFB, October 1990, DTIC
Number pending.

[Roybal 19901 R. Roybal, "AIM Procurement Guide," AIM Technology, Version 1.0, 1990.

[Rupley 1989] S. Rupley, Product Comparison, "Meeting Makers," InfoWorld, vol. 11, issue 47,
20 November 1989, pp. 63-77.

[Satterthwaite 1990] L.H. Satterthwaite, "Documentation Tool Evaluation Project," [@STSC
1990], 1990.

[Scoville 1990] R. Scoville, "Seven Sensible Spreadsheets," PC World, vol. 8, no. 4, April 1990,
pp. 116-131.

[Shaw 1989] R.H. Shaw, "Databases for OS/2: The First Wave," PC Magazine, vol. 8, no. 11,
13 June 1989, pp. 94-138.

[Simone 1989] L. Simone, "E-Mail, the Global Handshake," PC Magazine, vol. 8, no. 14,
August 1989, pp. 175-210.

[Simone 1990] L. Simone, "Self-Sufficient Publishing," PC Magazine, vol. 9, no. 4, 27 February
1990, pp. 97-176.

A-8

E&V Guidebook, Version 3.0

[STARS 1985] "Proposed Version 001.0," STARS Joint Service Team for Software Engineering
Environments, Stars Joint Program Office, October 1985.

[Stenning 1981] V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada Environment:
A Perspective," [@Wasserman 1981], pp. 36-46, 1981.

[Stinson 1990] C. Stinson, "Spreadsheet Heavyweights Take on 1-2-3," PC Magazine, vol. 9,
no. 8, 24 April 1990, pp. 97-156.

[STSC 1990] "STSC Strategy," USAF STSC - HQ USAF/SC Joint Software Conference
Proceedings, Salt Lake City, 23-26 April 1990.

[Stuebing 1988] H.G. Stuebing, "Evaluation of Computer Aided Systems/Software Engineering
Products for Time-Critical Naval Systems," Proceedings of the Conference Methodologies and
Tools for Real Time Systems, November 14-15, 1988.

[Sullivan-Trainor 1990] M.L. Sullivan-Trainor, Product Spotlight, "Buyer's Scorecard,"
ComputerWorld, vol. 24, no. 15, 9 April 1990, pp. 68-69.

[Szymanski 1985] R. Szymanski, "Evaluation and Validation (E&V) Team Public Report,"
Volume II, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, November
1985, DTIC Number AD A172 343.

[Szymanski 1987] R. Szymanski, "Evaluation and Validation (E&V) Team Public Report,"
Volume III, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB,
September 1987, DTIC Number AD A196 164.

[Szymanski 19901 R. Szymanski, "Evaluation and Validation (E&V) Team Public Report," Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, December 1990, DTIC
Number to be assigned.

[Texas Instruments 1985] The APSE Interactive Monitor, Texas Instruments, Slide
Presentation to the E&V Team, 5 September 1985.

[Troy 1987] D.A. i roy, "An Evaluation of CASE Tools," Proceedings of the 1987 International
Computer Software and Applications Conference, IEEE Computer Society, pp. 124-130,
1987.

[Van Buren 1990] J.K. Van Buren, "Evaluation Procedures for Requirements Analysis and
Design CASE Tools," [@STSC 1990], 1990.

[Von Gerichten 1989] L. Von Gerichten, et al., "Software Methodology Catalog," CECOM
Center for Software Engineering, US Army Communications-Electronics Command, C01-
091JB-0001-01, March 1989, DTIC Number AD A210 548.

[Walkenbach 1990] J. Walkenbach, Product Comparison, "High End Sheets," InfoWorld, vol.
12, issue 4, 22 January 1990, pp. 57-73.

A-9

E&V Guidebook, Version 3.0

[Walkenbach 1990a] J. Walkenbach, "No-Excuses Backup Software," PC World, vol. 8, no. 7,
July 1990, pp. 149-164.

[Wasserman 1981] A.I. Wasserman, Tutorial: Software Engineering Environments, IEEE, 1981.

[Weiderman 19871 N.H. Weiderman and A.N. Habermann, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987, DTIC
Number AD A180 905.

[Weiderman 1987a] N.H. Weiderman, et al., "Ada for Embedded Systems: Issues and
Questions," Software Engineering Institute, Technical Report CMU/SEI-87-TR-26,
December 1987, DTIC Number AD A191 096.

[Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler Evaluation and
Selection, Version 1.0," Software Engineering Institute, Technical Report CMU/SEI-89-TR-
13, March 1989, DTIC Number AD A207 717.

[Weiderman 1989a] N.H. Weiderman, "Hartstone: Synthetic Benchmark Requirements for
Hard Real-Time Applications," SEI-89-TR-23, Software Engineering Institute, June 1989.
(reprinted in [@PIWG 1990])

A-10

E&V Guidebook, Version 3.0

APPENDIX B

ACRONYMS AND ABBREVIATIONS

4GL Fourth Generation Language (e.g., SQL)

ACEC Ada Compiler Evaluation Capability
ACM Association for Computing Machinery
ACPS Ada Compiler Performance Test Suite
ACSI Advanced Computing Solutions, Inc.
ACVC Ada Compiler Validation Capability
AES Ada Evaluation System
AFB Air Force Base
AFWAL Air Force Wright Aeronautical Laboratories (now WL)
AIAA American Institute of Aeronautics and Astronautics
AIE Ada Integrated Environment
AJPO Ada Joint Program Office
ALS Ada Language System
ALS/N Ada Language System/Navy
ANNA Annotation Language for Ada
ANSI American National Standards Institute
APSE Ada Programming Support Environment
APSEWG APSE Working Group (E&V Team)
ARTEWG Ada RunTime Environment Working Group (SIGAda)
ASCII American Standard Code for Information Interchange
ATF Advanced Tactical Fighter
AVF Ada Validation Facility
AVO Ada Validation Organization

BGT Benchmark Generator Tool
bpi bits per inch
BSI British Standards Institute (UK)

CACM Communications of the ACM
CAD Computer Aided Design
CAE Computer Aided Engineering
CAIS Common APSE Interface Set
CAM Computer Aided Manufacturing
CASE Computer Aided Software Engineering
CECOM Communications-Electronics Command (US Army)
CISC Complex Instruction Set Computer
CIVC CAIS Implementation Validation Capability

B-1

E&V Guidebook, Version 3.0

CLI Command Language Instruction
CMU Carnegie Mellon University
COBOL COmmon Business Oriented Language
CORE Controlled Requirements Expression
CPM Critical Path Method
CPU Central Processing Unit
CSC Computer Software Component
CSU Computer Software Unit

DACS Dat. and Analysis Center for Software
DBMS DataBase Management System
DoD Department of Defense
DOS Disk Operating System
DTIC Defense Technical Information Center

EBCDIC Extended Binary Coded Decimal Interchange Code
ESD Electronic Systems Division (USAF)
E&V Evaluation and Validation

FIPS Federal Information Processing Standard
FORTRAN FORmula TRANslation (language)

GB Guidebook
GIT Georgia Institute of Technology
GKS Graphical Kernel System

HQ HeadQuarters

IBM International Business Machines Corporation
IDA Institute for Defense Analysis
IEEE Institute of Electrical and Electronics Engineers, Inc.
IMA Information Mission Area
INSTEP INnovative SofTware Engineering Practices, Inc.
IPSE Integrated Project Support Environment
IRD Information Resource Dictionary
IRDS Information Resource Dictionary System
ISTAR Information Science and Technology Assessment for Research
I/O Input/Output

JIAWG Joint Integrated Avionics Working Group

KAPSE Kernel Ada Programming Support Environment
KIT KAPSE Interface Team
KITIA KAPSE Interface Team for Industry and Academia

B-2

E&V Guidebook, Version 3.0

LHX Light Helicopter Experimental
LISP LISt Processing (language)
LRM Language Reference Manual [@DoD 1983]

MAPSE Minimal Ada Programming Support Environment
MCCS Mission-Critical Computer System
MIL MILitary (DoD)
MIPS Million Instructions Per Second
MIT Massachusetts Institute of Technology
MMI Man-Machine Interface
MoD Ministry of Defense (UK)

NADC Naval Air Development Center
NASA National Air and Space Administration
NBS National Bureau of Standards (now NIST)
NIST National Institute of Standards and Technology (formerly NBS)
NTIS National Technical Information Service

OCD Operational Concept Document
OS Operating System

PC Personal Computer
PCTE Portable Common Tool Environment
PDL Program Design Language
PERT Project Evaluation and Review Technique
PIWG Performance Issues Working Group (SIGAda)
POSIX Portable Operating System for computer environments (IEEE 1003.1)
POAC Production Quality Ada Compiler test suite

RADC Rome Air Development Center
RAM Random Access Memory
REQWG REQuirements Working Group (E&V Team)
RISC Reduced Instruction Set Computer
RM Reference Manual
RTE RunTime Environment
RTS RunTime System

SAIC Science Applications International Corporation
SDE Software Development Environment
SDI Strategic Defense Initiative
SEE Software Engineering Environment
SEI Software Engineering Institute
SERC Software Engineering Research Center
SIGAda Special Interest Group for Ada (ACM)
SIGSoft Special Interest Group for Software Engineering (ACM)
SPC Software Productivity Consortium
SPS Software Productivity Solutions

B-3

E&V Guidebook, Version 3.0

SQL Structured Query Language
STARS Software Technology for Adaptable, Reliable Systems
STD STanDard (DoD, MIL)
STEM Software Tool Evaluation Model (STSC)
STSC Software Technology Support Center

TASC The Analytic Sciences Corporation
TCP/IP Transmission Control Protocol/Internet Protocol
TOR Technical Operating Report
TR Technical Report

UK United Kingdom
UNIX UNiplexed Information and Computing Service (UNICS)
US United States
USAF US Air Force

VAX Virtual Address Extension
VMS Virtual Memory System
VSR Validation Summary Report
V&V Verification and Validation

WIS WWMCCS Information System
WL Wright Laboratories (formerly WRDC)
WRDC Wright Research and Development Center (formerly AFWAL)
WWMCCS WorldWide Military Command and Control System

B-4

E&V Guidebook, Version 3.0

APPENDIX C

FORMAL GRAMMAR

This appendix specifies sections of the Reference Manual and Guidebook (Reference

System) as a formal grammar. The sections include chapters four through seven of the

Reference Manual (RM), chapters four through 16 of the Guidebook (GB), all explicit

references, the tables of contents, the indices, and the citations. The specification is presented

as a partitioned grammar for convenience.

(The grammar is presented in a modified Backus-Naur form. Brackets represent

optionality when alone, and may be marked by an asterisk "*" to denote 0-N instances of the

production, or by a sharp "#" to denote 1-N instances. Angle brackets denote comments in

place of productions which are too elaborate to express here. All terminals of the grammar

are expressed as quoted literals, or composite literals based on characters and character

strings.)

C. 1 FORMAL REFERENCES

Throughout the Reference System, whenever formal references are made, a single

consistent set of grammar rules are used. This includes reference from one volume to the

other, reference from one section in a volume to another section in the same document, and

reference to documents outside the Reference System.

referencelist "[" references [";" references]* "

references = ["("] reference ["," reference]* [")"]

reference ::= ["@"I phrase ["'" [phrase] [designatorlist]]

I [phrase] designator-list

C-1

E&V Guidebook, Version 3.0

phraselist phrase ["," phrase]*

phrase : <text lacking special characters>

designator_list designator ["," designator]*

designator [lead "."] lead ("." digits]*

lead [digits] caps

digits one to nine [zeroto-nine]*

one tonine

zero to nine "0 - 9 ")

caps

C.2 FORMAL CHAPTERS

The formal chapters of the Guidebook are defined here.

C.2.1 Chapter Components

The following rules define the components which are used to compose formal chapter

entries.

prolog : header purpose primary [host]

[vendors agents]

header : designator phrase

purpose : "Purpose:" text

C-2

E&V Guidebook, Version 3.0

primary :: "Primary References:" reference list

host ::= "Host/OS:" text

vendorsagents .. "Vendors/Agents:" reference-list

method :: methdescription inputs

process outputs

meth_description ::= "Method:" text

inputs :: "Inputs:" text

process ::= "Process:" text

outputs :: "Outputs:" text

citations :: "Citations:" [citations]#

synopsis_text ::= "Synopsis:" text

methods " 'Methods:" reference list

text :: < prose text >

C.2.2 Chapter Entries

Each numbered section of the formal chapters follows a specific grammar rule. The

following rules define the format of each class of chapter entries.

synopsi :: header citations synopsistext [methods]

E&Vtechnology ::= prolog method

C-3

E&V Guidebook, Version 3.0

C.2.3 Formal Chapter Ordering

The formal portion of the GB is found in Chapters 4 through 16.

formalchapters [synopsis]*
[E&Vtechnology]*

[E&Vtechnology 1*

C.3 TABLE OF CONTENTS

The table of contents shares some features with the rest of the formal aspects of the GB.

table of contents [chapter 1*

chapter designator phrase designatorpage

designatorpage designator "-" digits

C.4 CITATIONS

The citations are found in Appendix A, and have a formal structure as defined in the

following grammar. The (semantic) form of citation text is taken from the standard for IEEE

Software Magazine.

citations [citation]*

citation key body .

key :: "[" phraselist "]"

C-4

E&V Guidebook, Version 3.0

body [referencelist] phraselist

C-5

E&V Guidebook, Version 3.0

APPENDIX D

VENDORS AND AGENTS

[ACM]
ACM Order Dept. (800) 342-6626
P.O. Box 64145 (301) 528-4261
Baltimore, MD 21264

[ACSI]
Advanced Computing Solutions, Inc. (713) 280-9917
17049 El Camino Real, Ste. 202
Houston, TX 77058

[Aerospace]
Richard Ham (213) 336-3438
Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009

[AIM]
AIM Technology (800) 848-8649
4699 Old Ironsides Drive, Suite 150 (408) 748-8649
Santa Clara, CA 95054
EMail: UUCP benchinfo@aimt.uu.net

[AJPO]
The Ada Joint Program Office (703) 614-0208
Rm 3D139
(Fern St/C107)
The Pentagon
Washington, D.C. 20301-3081
EMail: fittsd@ajpo.sei.cmu.edu

[ARTEWGI
Mike Kamrad (612) 456-7315
Unisys Computer, Systems Division
MS U2F13
P.O. Box 64525
St. Paul, MN 55164-0525
EMail: mkamrad@ajpo.sei.cmu.edu

D-1

E&V Guidebook, Version 3.0

[AVF]
Mr. Bobby R. Evans (513) 255-4472
ASD/SCEL
Wright-Patterson AFB
OH 45433
EMail: evansbr@wpafb-jalcf.arpa

[Boeing Aerospace]
Thomas Bowen, Gary Wigle, Jay Tsai
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

[BSI]
British Standards Institute 0908 220908
Information Technology Department
BSI Quality Assurance
P.O. Box 375 Linford Wood
Milton Keynes MK14 6LL
United Kingdom

[BYTE]
Mary Ann Goulding (603) 924-2664
BYTE Publications
One Phoenix Mill Lane
Peterborough, NH 03458

[Cambridge University Press]
Cambridge University Press
32 East 57th Street
New York, NY 10022

[CECOM]
Mr. Edward Gallagher (412) 268-5758
U.S. Army CECOM
AMSEL-RD-SE-AST
Ft. Monmouth, NJ 07703
EMail: egallagh@ajpo.sei.cmu.edu

[College of Wales]
Dr. Fred W. Long
Department of Computer Science
University College of Wales
Aberystwyth, UK

D-2

E&V Guidebook, Version 3.0

[ComputerWorld]
Margaret Mclndoe (508) 879-0700
ComputerWorld
Back Issues
Box 9171, 375 Cochituate Road
Framingham, MA 01701-9171
EMail: MCI COMPUTERWORLD

[Draper]
James K. Van Buren, Jr. (617) 258-2722
MS 3C
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, MA 02140

[DTIC]
Defense Technical Information Center (202) 274-6871 (Registration)
Cameron Station (703) 274-7633 (Reference)
Alexandria, VA 22314

[DACS]
Data Analysis Center for Software (315) 336-0937
RADC/COED
Bldg 101
Griffiss AFB, NY 13441-5700
Attn: Document Ordering
EMail: dacs@radc-multics

[E&V Team]
Mr. Raymond Szymanski (513) 255-6548
WL/AAAF -3947
Wright-Patterson AFB AV 785-6548
OH 45433-6543 -3947
EMail: szymansk@ajpo.sei.cmu.edu

[GIT]
Georgia Institute of Technology (404) 894-3180
Software Engineering Research Center
Atlanta, GA 30332-0280

[IEEE Computer]
IEEE Service Center (201) 981-0060
445 Hoes Lane
P.O. Bos 1331
Piscataway, NJ 08855-1331

D-3

E&V Guidebook, Version 3.0

[InfoWorld]
InfoWorld (415) 328-4602
1060 Marsh Road, Suite C-200
Menlo Park, CA 94025

[INSTEP]
Mr. Brian A. Nejmeh (703) 742-6276
Innovative Software Engineering Practices, Inc.
13526 Copper Bed Road
Herndon, VA 22071
EMail: nejmeh%instep@uunet.uu.net

[MITRE VA]
MITRE Corporation (703) 883-6000
Civil Systems Division
7525 Colshire Drive
McLean, VA 22102-3481

[NADC]
Naval Air Development Center (215) 441-2000
Street & Jacksonville Roads
Warminster, PA 18974-5000

[NASA/Ames]
Information Sciences Division
MS 244-4
NASA Ames Research Center
Moffett Field, CA 94035

[NTIS]
National Technical Information Service (703) 487-4650
U.S. Department of Commerce (202) 724-3374
5285 Port Royal Road
Springfield, VA 22161

[PC Magazine]
PC Magazine (212) 503-5255
One Park Avenue
New York, NY 10016
EMail: MCI PC Magazine

[PC World]
PC World Communications, Inc. (415) 243-0500
501 Second Street
San Francisco, CA 94107
EMail: MCI PCWORLD

D-4

E&V Guidebook, Version 3.0

[Personal Computing]
Personal Computing Magazine, Inc. (800) 829-9097
999 Riverview Drive
Totowa, NJ 07512

[PIWG]
Mr. Rob Spray (214) 907-6640
PIWG Tree
P.O. Box 850236
Richardson, TX 75085-0236

[RADC]
Rome Air Development Center (COEE) (315) 330-4654
Griffiss AFB, NY 13441-5700

[SAIC]
Gregory T. Daich (619) 546-6000
Science Applications International Corporation
10260 Campus Point Drive
San Diego, CA 92121

[SERC]
Ronnie J. Martin (317) 494-6012
Software Engineering Research Center
Purdue University
Department of Computer Sciences
West Lafayette, IN 47907-2004
EMail: rjm@purdue.edu

[SET]
Software Engineering Institute (412) 268-7700
Carnegie Mellon University
Pittsburgh, PA 15213

[SotTech OH]
Teresa L. Banks (513) 429-3241
SofTech, Inc.
3100 Presidential Drive
Fairborn, OH 45324-2039
ARPAnet: hillm@wpafb-jalcf

[SotTech TX]
David Remkes (713) 480-1994
SotTech, Inc.
1300 Hercules #105
Houston, TX 77058
EMail: chilsonl@ajpo.sei.cmu.edu

D-5

E&V Guidebook, Version 3.0

[SPC]
Software Productivity Consortium
SPC Building
2214 Rock Hill Road
Herndon, VA 22070

[SPS]
Software Productivity Solutions, Inc. (407) 984-3370
P.O. Box 361697
Melbourne, FL 32936

[STSCI
Rudy Alder (801) 777-7303
Manager, STSC AV 458-7703
OO-ALC/MMETI
Hill AFB, UT 84056

[TRW]
Lynn H. Satterthwaite
TRW
Military Electronics & Avionics
1104 Country Hills Drive
Ogden, UT 84403

[UMich]
Russel M. Clapp, Louis Duchesneau, (313) 764-1817
Richard A. Volz, Trevor N. Mudge, and Timothy Schultze
The Robotics Research Laboratory
The University of Michigan
Ann Arbor, MI 48109

D-6

E&V Guidebook, Version 3.0

REQUEST FOR USER FEEDBACK

Readers of this Guidebook and its companion, the "E&V Reference Manual," are urged
to provide feedback by sending comments, either electronically or by surface mail. For
electronic messages use:

szymansk@ajpo.sei.cmu.edu

For surface mail use:

Mr. Raymond Szymanski
WL/AAAF
Wright Patterson AFB, OH 45433-6543

This form provides a convenient mechanism for providing such feedback. Please, (1) copy the
form as many times as needed, and use blank pages if you need larger spaces for your answers,
(2) fill it in, and (3) mail it to the above address.

Thank you for your time and effort on behalf of E&V technology improvement.

E&V Guidebook, Version 3.0

USER IDENTIFICATION

Name (optional):
Phone (optional):
Address (optional):

Net Address (optional):

Please circle any that apply to your role or your employer:

Software Acquisition APSE/Tool User APSE/Tool Builder

E&V Technology User E&V Technology Builder Investor

Government Industry Academia Self-Employed

Why did you order the E&V Reference System documents?

USE OF THE REFERENCE SYSTEM

Do you feel that the documents are useful?
E&V Reference Manual E&V Guidebook

Have you already used them? How?

Can your co-workers use them in other ways? - How?

GENERAL COMMENTS

What particularly useful items have you noticed?

What additions would you like to suggest?

What are your general comments or criticisms?

E&V Guidebook, Version 3.0

f COMMENTS ON SPECIFIC SECTIONS

Section Number: - (e.g., GB 6.4 for Guidebook Section 6.4)
Section Title:__ _

Suggested Changes and/or Additions: ___________________

Section Number: - (e.g., GB 6.4 for Guidebook Section 6.4)
Section Title:________________________________

Suggested Changes and/or Additions: ___________________

Section Number: - (e.g., GB 6.4 for Guidebook Section 6.4)

Section Title:

Suggested Changes and/or Additions: ___________________

